×

Two-step AOR iteration method for the linear matrix equation \(AXB=C\). (English) Zbl 1476.65063

Summary: We propose a two-step AOR iteration method for solving the linear matrix equation \(AXB=C\). The convergence of this iteration method is discussed, and numerical results are reported to show the correctness of the theory and the effectiveness of this method.

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Bai, Z-Z, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl Math Comput, 109, 273-285 (2000) · Zbl 1026.65028
[2] Bai, Z-Z, On Hermitian and skew-Hermitian splitting iteration methods for the continuous Sylvester equations, J Comput Math, 29, 185-198 (2011) · Zbl 1249.65090 · doi:10.4208/jcm.1009-m3152
[3] Bai, Z-Z, Motivations and realizations of Krylov subspace methods for large sparse linear systems, J Comput Appl Math, 283, 71-78 (2015) · Zbl 1311.65032 · doi:10.1016/j.cam.2015.01.025
[4] Bai, Z-Z; Golub, GH; Ng, MK, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J Matrix Anal Appl, 24, 603-626 (2003) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[5] Deng, Y-B; Bai, Z-Z; Gao, Y-H, Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Num Linear Algebra Appl, 13, 801-823 (2006) · Zbl 1174.65382 · doi:10.1002/nla.496
[6] Fausett, DW; Fulton, CT, Large least squares problems involving Kronecker products, SIAM J Matrix Anal Appl, 15, 219-227 (1994) · Zbl 0798.65059 · doi:10.1137/S0895479891222106
[7] Golub, GH; Van Loan, CF, Matrix Computations (2013), Baltimore: The Johns Hopkins University Press, Baltimore · Zbl 1268.65037
[8] Li, X.; Huo, H-F; Yang, A-L, Preconditioned HSS iteration method and its non-alternating variant for continuous Sylvester equations, Comput Math Appl, 75, 1095-1106 (2018) · Zbl 1409.65027 · doi:10.1016/j.camwa.2017.10.028
[9] Liao, A-P; Bai, Z-Z, Least-squares solution of \(AXB=D\) over symmetric positive semidefinite matrices \(X\), J Comput Math, 21, 175-182 (2003) · Zbl 1029.65042
[10] Liao, A-P; Bai, Z-Z, Least squares symmetric and skew-symmetric solutions of the matrix equation \(AXA^T + BYB^T = C\) with the least norm, Math Num Sin, 27, 81-95 (2005) · Zbl 1099.65523
[11] Liu, Z-Y; Zhou, Y.; Zhang, Y-L; Lin, L.; Xie, D-X, Some remarks on Jacobi and Gauss-Seidel-type iteration methods for the matrix equation \(AXB = C\), Appl Math Comput, 354, 305-307 (2019) · Zbl 1429.65089
[12] Peng, Z-Y, An iterative method for the least squares symmetric solution of the linear matrix equation \(AXB=C\), Appl Math Comput, 170, 711-723 (2005) · Zbl 1081.65039
[13] Rauhala, UA, Introduction to array algebra, Photogramm Eng Remote Sens, 46, 177-192 (1980)
[14] Regalia, PA; Mitra, SK, Kronecker products, unitary matrices and signal processing applications, SIAM Rev, 31, 586-613 (1989) · Zbl 0687.15010 · doi:10.1137/1031127
[15] Tian, Z-L; Tian, M-Y; Liu, Z-Y; Xu, T-Y, The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation \(AXB=C\), Appl Math Comput, 292, 63-75 (2017) · Zbl 1410.65126
[16] Wang, X.; Li, Y.; Dai, L., On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation \(AXB=C\), Comput Math Appl, 65, 657-664 (2013) · Zbl 1319.65033 · doi:10.1016/j.camwa.2012.11.010
[17] Yang, J.; Deng, Y-B, On the solutions of the equation \(AXB=C\) under Toeplitz-like and Hankel matrices constraint, Math Methods Appl Sci, 41, 2074-2094 (2018) · Zbl 1391.65114 · doi:10.1002/mma.4735
[18] Zak, MK; Toutounian, F., Nested splitting conjugate gradient method for matrix equation \(AXB=C\) and preconditioning, Comput Math Appl, 66, 269-278 (2013) · Zbl 1347.65078 · doi:10.1016/j.camwa.2013.05.004
[19] Zha, H., Comments on large least squares problems involving Kronecker products, SIAM J Matrix Anal Appl, 16, 1172 (1995) · Zbl 0834.65029 · doi:10.1137/S0895479894265009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.