×

A Stackelberg reinsurance-investment game with asymmetric information and delay. (English) Zbl 1475.91282

Summary: This paper investigates a Stackelberg stochastic differential reinsurance-investment game problem, in which the reinsurer is the leader and the insurer is the follower. The unequal status of the reinsurer and the insurer in the financial market is characterized by the asymmetric information model. We consider their wealth processes with delay to characterize bounded memory. The objective of the reinsurer is to find the optimal premium pricing strategy and investment strategy such that its constant absolute risk aversion (CARA) utility of the combination of terminal wealth and average performance wealth is maximized. The objective of the insurer is to find the optimal reinsurance strategy and investment strategy such that its CARA utility of the relative performance is maximized. We derive the equilibrium strategy explicitly for the game by solving corresponding Hamilton-Jacobi-Bellman equations sequentially. Then, we establish the verification theorem. The equilibrium investment strategy indicates that the insurer with less information completely imitates the investment strategy of the reinsurer who has more information on the financial market. Further, we find that the effect of the delay weight on the equilibrium strategy is related to the length of delay time. Finally, we present some numerical examples to demonstrate the findings.

MSC:

91G05 Actuarial mathematics
91A65 Hierarchical games (including Stackelberg games)
91A15 Stochastic games, stochastic differential games
91A80 Applications of game theory
91G80 Financial applications of other theories
Full Text: DOI

References:

[1] Browne, S., Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin, Math Oper Res, 20, 4, 937-958 (1995) · Zbl 0846.90012 · doi:10.1287/moor.20.4.937
[2] Chen, S.; Li, Z.; Li, K., Optimal investment-reinsurance policy for an insurance company with VaR constraint, Insur Math Econom, 47, 2, 144-153 (2010) · Zbl 1231.91155 · doi:10.1016/j.insmatheco.2010.06.002
[3] Li, P.; Zhao, W.; Zhou, W., Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process, Appl Math Comput, 259, 1030-1045 (2015) · Zbl 1390.91195
[4] Huang, Y.; Yang, X.; Zhou, J., Optimal investment and proportional reinsurance for a jump-diffusion risk model with constrained control variables, J Comput Appl Math, 296, 443-461 (2016) · Zbl 1331.91097 · doi:10.1016/j.cam.2015.09.032
[5] Li, Z.; Zeng, Y.; Lai, Y., Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model, Insur Math Econom, 51, 1, 191-203 (2012) · Zbl 1284.91250 · doi:10.1016/j.insmatheco.2011.09.002
[6] Liang, Z.; Bai, L.; Guo, J., Optimal investment and proportional reinsurance with constrained control variables, Opt Control Appl Methods, 32, 587-608 (2011) · Zbl 1237.91133 · doi:10.1002/oca.965
[7] Xu, L.; Wang, R.; Yao, D., On maximizing the expected terminal utility by investment and reinsurance, J Industr Manage Optim, 4, 4, 801-805 (2008) · Zbl 1158.91400
[8] Zhao, H.; Rong, X., On the constant elasticity of variance model for the utility maximization problem with multiple risky assets, IMA J Manage Math, 28, 2, 299-320 (2017) · Zbl 1473.91019 · doi:10.1093/imaman/dpv011
[9] Huang, Y.; Ouyang, Y.; Tang, L., Robust optimal investment and reinsurance problem for the product of the insurer’s and the reinsurer’s utilities, J Comput Appl Math, 344, 532-552 (2018) · Zbl 1458.91184 · doi:10.1016/j.cam.2018.05.060
[10] Huang, Y.; Yang, X.; Zhou, J., Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Math Methods Oper Res, 85, 2, 305-326 (2017) · Zbl 1414.91203 · doi:10.1007/s00186-017-0570-8
[11] Yi, B.; Li, Z.; Viens, FG, Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model, Insur Math Econom, 53, 601-614 (2013) · Zbl 1290.91103 · doi:10.1016/j.insmatheco.2013.08.011
[12] Zheng, X.; Zhou, J.; Sun, Z., Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insur Math Econom, 67, 77-87 (2016) · Zbl 1348.91195 · doi:10.1016/j.insmatheco.2015.12.008
[13] Bi, J.; Meng, Q.; Zhang, Y., Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer, Ann Oper Res, 212, 1, 43-59 (2014) · Zbl 1291.91092 · doi:10.1007/s10479-013-1338-z
[14] Yang, P., Time-consistent mean-variance reinsurance-investment in a jump-diffusion financial market, Optimization, 66, 5, 737-758 (2017) · Zbl 1369.91102 · doi:10.1080/02331934.2017.1296837
[15] Zhou, J.; Zhang, X.; Huang, Y., Optimal investment and risk control policies for an insurer in an incomplete market, Optimization, 68, 9, 1625-1652 (2019) · Zbl 1426.91238 · doi:10.1080/02331934.2019.1581778
[16] Zhou, Z.; Ren, T.; Xiao, H., Time-consistent investment and reinsurance strategies for insurers under multi-period mean-variance formulation with generalized correlated returns, J Manage Sci Engin, 4, 2, 142-157 (2019) · doi:10.1016/j.jmse.2019.05.003
[17] Zeng, X., A stochastic differential reinsurance game, J Appl Probab, 47, 2, 335-349 (2010) · Zbl 1222.93238 · doi:10.1239/jap/1276784895
[18] Taksar, M.; Zeng, X., Optimal non-proportional reinsurance control and stochastic differential games, Insur Math Econom, 48, 1, 64-71 (2011) · Zbl 1218.91064 · doi:10.1016/j.insmatheco.2010.09.006
[19] Li, D.; Rong, X.; Zhao, H., Stochastic differential game formulation on the reinsurance and investment problem, Int J Control, 88, 9, 1861-1877 (2015) · Zbl 1411.91297 · doi:10.1080/00207179.2015.1022797
[20] Bensoussan, A.; Siu, CC; Yam, SCP, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50, 8, 2025-2037 (2014) · Zbl 1297.93180 · doi:10.1016/j.automatica.2014.05.033
[21] Yan, M.; Peng, F.; Zhang, S., A reinsurance and investment game between two insurance companies with the different opinions about some extra information, Insur Math Econom, 75, 58-70 (2017) · Zbl 1394.91239 · doi:10.1016/j.insmatheco.2017.04.002
[22] Meng, H.; Li, S.; Jin, Z., A reinsurance game between two insurance companies with nonlinear risk processes, Insur Math Econom, 62, 91-97 (2015) · Zbl 1318.91120 · doi:10.1016/j.insmatheco.2015.03.008
[23] Pun, CS; Wong, HY., Robust non-zero-sum stochastic differential reinsurance game, Insur Math Econom, 68, 169-177 (2016) · Zbl 1369.91094 · doi:10.1016/j.insmatheco.2016.02.007
[24] Guan, G.; Liang, Z., A stochastic Nash equilibrium portfolio game between two DC pension funds, Insur Math Econom, 70, 237-244 (2016) · Zbl 1371.91156 · doi:10.1016/j.insmatheco.2016.06.015
[25] Deng, C.; Zeng, X.; Zhu, H., Non-zero-sum stochastic differential reinsurance and investment games with default risk, Eur J Oper Res, 264, 3, 1144-1158 (2018) · Zbl 1376.91098 · doi:10.1016/j.ejor.2017.06.065
[26] Chen, L.; Shen, Y., On a new paradigm of optimal reinsurance: A stochastic stackelberg differential game between an insurer and a reinsurer, ASTIN Bull, 48, 2, 905-960 (2018) · Zbl 1390.91170 · doi:10.1017/asb.2018.3
[27] Putschögl, W.; Sass, J., Optimal consumption and investment under partial information, Decisions Econom Finance, 31, 2, 137-170 (2008) · Zbl 1165.91410 · doi:10.1007/s10203-008-0082-3
[28] Hansen, SL., Optimal consumption and investment strategies with partial and private information in a multi-asset setting, Math Financial Econom, 7, 3, 305-340 (2012) · Zbl 1281.91143 · doi:10.1007/s11579-012-0086-1
[29] Fouque, JP; Papanicolaou, A.; Sircar, R., Perturbation analysis for investment portfolios under partial information with expert opinions, SIAM J Control Optim, 55, 3, 1534-1566 (2017) · Zbl 1414.91337 · doi:10.1137/15M1006854
[30] Shen, Y.; Zeng, Y., Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach, Insur Math Econom, 57, 1-12 (2014) · Zbl 1304.91132 · doi:10.1016/j.insmatheco.2014.04.004
[31] Chunxiang, A.; Li, Z., Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model, Insur Math Econom, 61, 181-196 (2015) · Zbl 1314.91128 · doi:10.1016/j.insmatheco.2015.01.005
[32] Yang, X.; Liang, Z.; Zhang, C., Optimal mean-variance reinsurance with delay and multiple classes of dependent risks, SCIENTIA SINICA Math, 47, 6, 723-756 (2017) · Zbl 1499.91101 · doi:10.1360/SCM-2016-0388
[33] Chunxiang, A.; Lai, Y.; Shao, Y., Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the CEV model, J Comput Appl Math, 342, 317-336 (2018) · Zbl 1422.91320 · doi:10.1016/j.cam.2018.03.035
[34] Avdis, E.; Wachter, JA., Maximum likelihood estimation of the equity premium, J Financ Econ, 125, 3, 589-609 (2017) · doi:10.1016/j.jfineco.2017.06.003
[35] Merton, R., On estimating the expected return on the market: an exploratory investigation, J Financ Econ, 8, 4, 323-361 (1980) · doi:10.1016/0304-405X(80)90007-0
[36] Li, Y.; Qiao, H.; Wang, S., Time-consistent investment strategy under partial information, Insur Math Econom, 65, 187-197 (2015) · Zbl 1348.91257 · doi:10.1016/j.insmatheco.2015.08.011
[37] Yong, J., A leader-follower stochastic linear quadratic differential game, SIAM J Control Optim, 41, 4, 1015-1041 (2002) · Zbl 1039.93070 · doi:10.1137/S0363012901391925
[38] Chen, L.; Shen, Y., Stochastic stackelberg differential reinsurance games under time-inconsistent mean-variance framework, Insur Math Econom, 88, 120-137 (2019) · Zbl 1425.91217 · doi:10.1016/j.insmatheco.2019.06.006
[39] Lin, X.; Qian, Y., Time-consistent mean-variance reinsurance-investment strategy for insurers under CEV model, Scand Actuar J, 2016, 7, 646-671 (2015) · Zbl 1401.91168 · doi:10.1080/03461238.2015.1048710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.