×

Computational homogenisation of phase-field fracture. (English) Zbl 1475.74105

Summary: In this manuscript, the computational homogenisation of phase-field fractures is addressed. To this end, a variationally consistent two-scale phase-field fracture framework is developed, which formulates the coupled momentum balance and phase-field evolution equations at the macro-scale as well as at the Representative Volume Element (RVE\(^1\)) scale. The phase-field variable represent fractures at the RVE scale, however, at the macro-scale, it is treated as an auxiliary variable. The latter interpretation follows from the homogenisation of the phase-field through volume or a surface-average. For either homogenisation choices, the set of macro-scale and sub-scale equations, and the pertinent macro-homogeneity satisfying boundary conditions are established. As a special case, the concept of selective homogenisation is introduced, where the phase-field is chosen to live only in the RVE domain, thereby eliminating the macro-scale phase-field evolution equation. Numerical experiments demonstrate the local macro-scale material behaviour of the selective homogenisation based two-scale phase-field fracture model, while its non-selective counterpart yields a non-local macro-scale material behaviour.

MSC:

74R10 Brittle fracture
74Q05 Homogenization in equilibrium problems of solid mechanics
74E05 Inhomogeneity in solid mechanics

References:

[1] Alessi, R.; Marigo, J.-J.; Vidoli, S., Gradient damage models coupled with plasticity: Variational formulation and main properties, Mech. Mater., 80, 351-367 (2015), Materials and Interfaces
[2] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[3] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012), URL: http://www.sciencedirect.com/science/article/pii/S0045782512000199 · Zbl 1253.74089
[4] de Borst, R.; Sluys, L.-J.; Muhlhaus, H.; Pamin, J., Fundamental issues in finite element analyses of localization of deformation, Eng. Comput. Int. J. Comput. Aided Eng., 10, 2, 99-121 (1993)
[5] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[6] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[7] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 3, 980-1012 (2010) · Zbl 1305.74080
[8] Cajuhi, T.; Sanavia, L.; De Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput. Mech., 61, 3, 299-318 (2018) · Zbl 1458.74125
[9] Fantoni, F.; Bacigalupo, A.; Paggi, M.; Reinoso, J., A phase field approach for damage propagation in periodic microstructured materials, Int. J. Fract. (2019)
[10] Feyel, F., Multiscale FE2 elastoviscoplastic analysis of composite structures, Comput. Mater. Sci., 16, 1, 344-354 (1999)
[11] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[12] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[13] Gerasimov, T.; De Lorenzis, L., On penalization in variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 354, 990-1026 (2019) · Zbl 1441.74203
[14] Gitman, I.; Askes, H.; Sluys, L., Representative volume: Existence and size determination, Eng. Fract. Mech., 74, 16, 2518-2534 (2007)
[15] Griffith, A. A.; Taylor, G. I., VI. The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. Ser. A,, 221, 582-593, 163-198 (1921) · Zbl 1454.74137
[16] He, B.; Schuler, L.; Newell, P., A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media, Comput. Mater. Sci., 176, Article 109519 pp. (2020)
[17] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg. (2015) · Zbl 1423.76239
[18] Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[19] Hill, R., On macroscopic effects of heterogeneity in elastoplastic media at finite strain, Math. Proc. Camb. Phil. Soc., 95, 3, 481-494 (1984) · Zbl 0553.73025
[20] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 3, 865-888 (2002) · Zbl 1080.90074
[21] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1, 3-24 (1998), Advances in Stabilized Methods in Computational Mechanics · Zbl 1017.65525
[22] Irwin, G., Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. Trans. ASME, E24, 351-369 (1957)
[23] Jänicke, R.; Larsson, F.; Runesson, K., A poro-viscoelastic substitute model of fine-scale poroelasticity obtained from homogenization and numerical model reduction, Comput. Mech. (2020) · Zbl 1465.74049
[24] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M., An assessment of the phase field formulation for crack growth, Comput. Methods Appl. Mech. Engrg., 294, 313-330 (2015) · Zbl 1423.74833
[25] Larsson, F.; Runesson, K.; Saroukhani, S.; Vafadari, R., Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Comput. Methods Appl. Mech. Engrg., 200, 1, 11-26 (2011) · Zbl 1225.74069
[26] Larsson, F.; Runesson, K.; Su, F., Computational homogenization of uncoupled consolidation in micro-heterogeneous porous media, Int. J. Numer. Anal. Methods Geomech., 34, 14, 1431-1458 (2010) · Zbl 1273.74080
[27] Larsson, F.; Runesson, K.; Su, F., Variationally consistent computational homogenization of transient heat flow, Internat. J. Numer. Methods Engrg., 81, 13, 1659-1686 (2010) · Zbl 1183.80109
[28] Lee, S.; Wheeler, M. F.; Wick, T.; Srinivasan, S., Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks., Mech. Res. Commun., 80, 16-23 (2017)
[29] Martínez-Pañeda, E.; Golahmar, A.; Niordson, C. F., A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 342, 742-761 (2018) · Zbl 1440.82005
[30] May, S.; Vignollet, J.; de Borst, R., A numerical assessment of phase-field models for brittle and cohesive fracture: \( G a m m a\)-convergence and stress oscillations, Eur. J. Mech. A Solids, 52, 72-84 (2015) · Zbl 1406.74599
[31] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., A variational approach to the fracture of brittle thin films subject to out-of-plane loading, J. Mech. Phys. Solids, 61, 11, 2360-2379 (2013)
[32] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32 (2016)
[33] Miehe, C.; Hofacker, M.; Schänzel, L. M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[34] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[35] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[36] Miehe, C.; Schänzel, L. M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part i. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[37] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[38] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM - International Journal on Geomathematics, Vol. 10 (2019), Springer International Publishing · Zbl 1419.74216
[39] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, 5, 577-685 (1989) · Zbl 0691.49036
[40] Nagaraja, S.; Elhaddad, M.; Ambati, M.; Kollmannsberger, S.; De Lorenzis, L.; Rank, E., Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method, Comput. Mech., 63, 6, 1283-1300 (2019) · Zbl 1465.74152
[41] Nemat-Nasser, S., Averaging theorems in finite deformation plasticity, Mech. Mater., 31, 8, 493-523 (1999)
[42] Nguyen, V. P.; Lloberas-Valls, O.; Stroeven, M.; Sluys, L. J., On the existence of representative volumes for softening quasi-brittle materials – a failure zone averaging scheme, Comput. Methods Appl. Mech. Engrg., 199, 45, 3028-3038 (2010) · Zbl 1231.74372
[43] Nguyen, T. T.; Réthoré, J.; Baietto, M.-C., Phase field modelling of anisotropic crack propagation, Eur. J. Mech. A Solids, 65, 279-288 (2017) · Zbl 1406.74602
[44] Ohman, M.; Larsson, F.; Runesson, K., Computational homogenization of liquid-phase sintering with seamless transition from macroscopic compressibility to incompressibility, Comput. Methods Appl. Mech. Engrg., 266, 219-228 (2013) · Zbl 1286.76045
[45] Ostoja-Starzewski, M., Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech., 21, 2, 112-132 (2006)
[46] Patil, R.; Mishra, B.; Singh, I., An adaptive multiscale phase field method for brittle fracture, Comput. Methods Appl. Mech. Engrg., 329, 254-288 (2018) · Zbl 1439.74368
[47] Patil, R.; Mishra, B.; Singh, I., A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials, Theor. Appl. Fract. Mech., 100, 390-415 (2019)
[48] Patil, R.; Mishra, B.; Singh, I.; Bui, T., A new multiscale phase field method to simulate failure in composites, Adv. Eng. Softw., 126, 9-33 (2018)
[49] Pollmann, N.; Larsson, F.; Runesson, K.; Janicke, R., Diffuse interface modeling and variationally consistent homogenization of fluid transport in fractured porous media, Eur. J. Mech. A Solids, 84, Article 104067 pp. (2020), URL: http://www.sciencedirect.com/science/article/pii/S0997753820304551 · Zbl 1478.76062
[50] Runesson, K.; Ekh, M.; Larsson, F., Computational homogenization of mesoscale gradient viscoplasticity, Comput. Methods Appl. Mech. Engrg., 317, 927-951 (2017) · Zbl 1439.74076
[51] Sandstrom, C.; Larsson, F., Variationally consistent homogenization of Stokes flow in porous media, Int. J. Multiscale Comput. Eng., 11, 2, 117-138 (2013)
[52] Sandstrom, C.; Larsson, F.; Runesson, K.; Johansson, H., A two-scale finite element formulation of Stokes flow in porous media, Comput. Methods Appl. Mech. Engrg., 261-262, 96-104 (2013) · Zbl 1286.76046
[53] Svenning, E.; Fagerstr, M.; Larsson, F., Computational homogenization of microfractured continua using weakly periodic boundary conditions, Comput. Methods Appl. Mech. Engrg., 299, 1-21 (2016) · Zbl 1425.74394
[54] Svenning, E.; Fagerström, M.; Larsson, F., On computational homogenization of microscale crack propagation, Internat. J. Numer. Methods Engrg., 108, 1, 76-90 (2016) · Zbl 07870090
[55] Svenning, E.; Larsson, F.; Fagerström, M., Two-scale modeling of fracturing solids using a smeared macro-to-micro discontinuity transition, Comput. Mech., 60, 4, 627-641 (2017) · Zbl 1386.74129
[56] Wick, T., Goal functional evaluations for phase-field fracture using PU-based dwr mesh adaptivity, Comput. Mech., 57, 6, 1017-1035 (2016) · Zbl 1382.74130
[57] Wick, T., An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J. Sci. Comput., 39, 4, B589-B617 (2017) · Zbl 1403.74131
[58] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Engrg. (2017) · Zbl 1439.74375
[59] Wilson, Z. A.; Landis, C. M., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020
[60] Zhou, S.; Zhuang, X.; Rabczuk, T., A phase-field modeling approach of fracture propagation in poroelastic media, Eng. Geol., 240, March, 189-203 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.