×

Isothermic constrained Willmore tori in 3-space. (English) Zbl 1475.53068

Willmore surfaces in the 3-sphere \(S^3\) are critical points of the Willmore functional: \[\mathcal W(f)=\int_M(H^2+1)dA,\] where \(f:M\to S^3\) is an immersion from an oriented surface \(M\) into \(S^3\), \(H\) is the mean curvature and \(dA\) is the induced area form of \(f\). Critical points of the Willmore functional restricted to a given conformal class are called constrained Willmore surfaces, and surfaces admit conformal curvature line parametrizations away from their umbilical points are called isothermic. In this paper, the authors prove that isothermic constrained Willmore tori in the conformal 3-sphere with Willmore energy below \(8\pi\) are constant mean curvature surfaces in the round 3-sphere.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A31 Differential geometry of submanifolds of Möbius space

References:

[1] Alexandrov, AD, Uniqueness theorems for surfaces in the large v, Amer. Math. Soc. Transl., 21, 412-416 (1962) · Zbl 0119.16603
[2] Andrews, B.; Li, H., Embedded constant mean curvature tori in the three-sphere, J. Differential Geom., 99, 2, 169-189 (2015) · Zbl 1318.53059 · doi:10.4310/jdg/1421415560
[3] Babich, M.; Bobenko, A., Willmore tori with umbilic lines and minimal surfaces in hyperbolic space, Duke Math. J., 72, 1, 151-185 (1993) · Zbl 0820.53005 · doi:10.1215/S0012-7094-93-07207-9
[4] Bohle, C., Constrained Willmore tori in the 4-sphere, J. Differential Geom., 86, 1, 71-131 (2010) · Zbl 1217.53059 · doi:10.4310/jdg/1299766684
[5] Bohle, C.; Leschke, K.; Pedit, F.; Pinkall, U., Conformal maps from a 2-torus to the 4-sphere, J. Reine Angew. Math., 671, 1-30 (2012) · Zbl 1261.53057 · doi:10.1515/CRELLE.2011.156
[6] Bohle, C.; Paul Peters, G., Soliton spheres, Trans. Amer. Math. Soc., 363, 10, 5419-5463 (2011) · Zbl 1229.53062 · doi:10.1090/S0002-9947-2011-05323-7
[7] Bohle, C.; Paul Peters, G.; Pinkall, U., Constrained Willmore surfaces, Calc. Var. Partial Differential Equations, 32, 2, 263-277 (2008) · Zbl 1153.53037 · doi:10.1007/s00526-007-0142-5
[8] Brendle, S., Embedded minimal tori in \(S^3\) and the Lawson conjecture, Acta Math., 211, 2, 177-190 (2013) · Zbl 1305.53061 · doi:10.1007/s11511-013-0101-2
[9] Burstall, F.E., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in \({S}^4\) and quaternions. Lecture Notes in Mathematics, vol. 1772. Springer, Berlin (2002) · Zbl 1033.53001
[10] Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces, Differential geometry and integrable systems (Tokyo, 2000), Contemp. Math., vol. 308, pp. 39-61. American Mathematical Society, Providence (2002) · Zbl 1031.53026
[11] Burstall, F.E.B., Calderbank, D.M.J.: Conformal submanifold geometry i-iii, arxiv:1006.5700 (2010)
[12] Burstall, FE; Quintino, ÁC, Dressing transformations of constrained Willmore surfaces, Comm. Anal. Geom., 22, 3, 469-518 (2014) · Zbl 1306.53051 · doi:10.4310/CAG.2014.v22.n3.a4
[13] Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U., Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic \(2\)-tori, Invent. Math., 146, 3, 507-593 (2001) · Zbl 1038.53046 · doi:10.1007/s002220100173
[14] Heller, L., Constrained Willmore tori and elastic curves in 2-dimensional space forms, Comm. Anal. Geom., 22, 2, 343-369 (2014) · Zbl 1295.53064 · doi:10.4310/CAG.2014.v22.n2.a6
[15] Heller, L., Equivariant constrained Willmore tori in the 3-sphere, Math. Z., 278, 3-4, 955-977 (2014) · Zbl 1305.53063 · doi:10.1007/s00209-014-1340-4
[16] Heller, L., Constrained Willmore and CMC tori in the 3-sphere, Differential Geom. Appl., 40, 232-242 (2015) · Zbl 1334.53058 · doi:10.1016/j.difgeo.2015.03.003
[17] Heller, L.; Heller, S., Higher solutions of Hitchin’s self-duality equations, J. Integr. Syst., 5, 1, xyaa006 (2020) · Zbl 1481.37082 · doi:10.1093/integr/xyaa006
[18] Hitchin, NJ, Harmonic maps from a \(2\)-torus to the \(3\)-sphere, J. Differential Geom., 31, 3, 627-710 (1990) · Zbl 0725.58010 · doi:10.4310/jdg/1214444631
[19] Kilian, M.; Schmidt, MU; Schmitt, N., Flows of constant mean curvature tori in the 3-sphere: the equivariant case, J. Reine Angew. Math., 707, 45-86 (2015) · Zbl 1329.53087
[20] Korevaar, NJ; Kusner, R.; Solomon, B., The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom., 30, 2, 465-503 (1989) · Zbl 0726.53007 · doi:10.4310/jdg/1214443598
[21] Li, P.; Tung Yau, S., A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69, 2, 269-291 (1982) · Zbl 0503.53042 · doi:10.1007/BF01399507
[22] Pinkall, U., Regular homotopy classes of immersed surfaces, Topology, 24, 4, 421-434 (1985) · Zbl 0583.57020 · doi:10.1016/0040-9383(85)90013-8
[23] Pirola, GP, Monodromy of constant mean curvature surface in hyperbolic space, Asian J. Math., 11, 4, 651-669 (2007) · Zbl 1196.53009 · doi:10.4310/AJM.2007.v11.n4.a7
[24] Quintino, A.: Constrained willmore surfaces. Ph.D. thesis, University of Bath (2009) · Zbl 1225.53011
[25] Quintino, Á., Spectral deformation and Bäcklund transformation of constrained Willmore surfaces, Differential Geom. Appl., 29, suppl. 1, S261-S270 (2011) · Zbl 1225.53011 · doi:10.1016/j.difgeo.2011.04.051
[26] Richter, J.: Conformal maps of a riemannian surface into the space of quaternions. Ph.D. thesis, TU Berlin (1997) · Zbl 0896.53005
[27] Schätzle, RM, Conformally constrained willmore immersions, Adv. Calc. Var., 6, 375-390 (2013) · Zbl 1282.53007 · doi:10.1515/acv-2013-0102
[28] Steinberg, D.H.: Elastic curves in hyperbolic space. Ph.D. thesis, Case Western Reserve University (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.