×

Commutative Lie algebras and commutative cohomology in characteristic 2. (English) Zbl 1475.17030

The article under review deals with commutative Lie algebras in characteristic \(2\). That is, a vector space \(L\) over a base field \(K\) of characteristic \(2\) which carries a bracket such that for all \(x,y,z\in L\), we have \[ [x,y]=[y,x] \] and the Jacobi identity \[ [[x,y],z]+[[y,z],x]+[[z,x],y]=0. \] This is a notion which lies in between Lie algebras in characteristic \(2\) (where \([x,x]=0\) for all \(x\in L\)) and (is a special case of) Leibniz algebras. The authors develop cohomology theory for these commutative Lie algebras, called commutative cohomology and based on symmetric tensor products. They have some sample computations, for example for the Heisenberg Lie algebra and the Zassenhaus Lie algebra. They argue that commutative cohomology constitutes another invariant which should be helpful in the classification of Lie algebras in characteristic \(2\).
In the follow-up work [the reviewer, Commun. Math. 28, No. 2, 123–137 (2020; Zbl 1480.17021)], some standard spectral sequences for commutative cohomology are developed, and the link to Chevalley-Eilenberg cohomology is explored further.

MSC:

17B50 Modular Lie (super)algebras
17B56 Cohomology of Lie (super)algebras
17B99 Lie algebras and Lie superalgebras

Citations:

Zbl 1480.17021

Software:

OEIS; GAP

Online Encyclopedia of Integer Sequences:

a(n) = 2^n + n - 1.

References:

[1] Bouarroudj, S., Grozman, P., Lebedev, A. and Leites, D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homology Homotopy Appl.12(1) (2010) 237-278; arXiv:0911.0243. · Zbl 1200.17009
[2] A. S. Dzhumadil’daev, Algebras with skew-symmetric identity of degree 3, Sovremennaya Matematika i ee Prilozheniya60 (2008) (E. B. Vinberg Festshrift) 13-31 (in Russian); J. Math. Sci.161(1) (2009) 11-30 (English translation). · Zbl 1246.17002
[3] Dzhumadil’daev, A. S. and Abdykassymova, S. A., Leibniz algebras in characteristic \(p\), Comptes Rendus Acad. Sci. Paris332(12) (2001) 1047-1052. · Zbl 1037.17003
[4] A. S. Dzhumadil’daev and A. B. Bakirova, Simple two-sided anti-Lie-admissible algebras, Sovremennaya Matematika i ee Prilozheniya60 (2008) (E. B. Vinberg Festshrift) 32-37 (in Russian); J. Math. Sci.161(1) (2009) 31-36 (English translation). · Zbl 1239.17027
[5] Dzhumadil’daev, A. S. and Zusmanovich, P., Commutative 2-cocycles on Lie algebras, J. Algebra324(4) (2010) 732-748; arXiv:0907.4780. · Zbl 1246.17024
[6] Eick, B., Some new simple Lie algebras in characteristic 2, J. Symb. Comput.45(9) (2010) 943-951. · Zbl 1229.17024
[7] Etingof, P., Koszul duality and the PBW theorem in symmetric tensor categories in positive characteristic, Adv. Math.327 (2018) 128-160; arXiv:1603.08133. · Zbl 1440.18030
[8] García-Martínez, X. and Van der Linden, T., A characterisation of Lie algebras via algebraic exponentiation, Adv. Math.341 (2019) 92-117; arXiv:1711.00689. · Zbl 1439.17008
[9] Grishkov, A. and Zusmanovich, P., Deformations of current Lie algebras. I. Small algebras in characteristic 2, J. Algebra473 (2017) 513-544; arXiv:1410.3645. · Zbl 1415.17017
[10] Jöllenbeck, M. and Welker, V., Minimal Resolutions via Algebraic Discrete Morse Theory, Memoirs Amer. Math. Soc.197(923) (2009). · Zbl 1160.13007
[11] Jurman, G., A family of simple Lie algebras in characteristic two, J. Algebra271(2) (2004) 454-481. · Zbl 1054.17007
[12] Kassel, C. and Loday, J.-L., Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier32(4) (1982) 119-142. · Zbl 0485.17006
[13] Levine, J., Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol.6(2) (2006) 935-948. arXiv:math/0504278. · Zbl 1144.57009
[14] Loday, J.-L. and Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.296(1) (1993) 139-158. · Zbl 0821.17022
[15] Sköldberg, E., The homology of Heisenberg Lie algebra over fields of characteristic two, Math. Proc. Roy. Irish Acad. A105(2) (2005) 47-49. arXiv:math/0312124. · Zbl 1095.17008
[16] Sköldberg, E., Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc.358(1) (2006) 115-129. · Zbl 1150.16008
[17] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.8, 2015, https://www.gap-system.org.
[18] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/. · Zbl 1044.11108
[19] F. Wagemann, Spectral sequences for commutative Lie algebras, to appear in Comm. Math.; arXiv:1908.06764. · Zbl 1480.17021
[20] Weibel, C., An Introduction to Homological Algebra (Cambridge University Press, 1994). · Zbl 0797.18001
[21] Zusmanovich, P., Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds, Lin. Algebra Appl.407 (2005) 71-104; arXiv:math/0302334. · Zbl 1159.17310
[22] Zusmanovich, P., How Euler would compute the Euler-Poincaré characteristic of a Lie superalgebra, Expos. Math.29(3) (2011) 345-360. arXiv:0812.2255. · Zbl 1287.17042
[23] Zusmanovich, P., Special and exceptional mock-Lie algebras, Lin. Algebra Appl.518 (2017) 79-96; arXiv:1608.05861. · Zbl 1400.17015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.