×

Candidates for non-rectangular constrained Willmore minimizers. (English) Zbl 1470.53013

Summary: For every \(b>1\) fixed, we explicitly construct 1-dimensional families of embedded constrained Willmore tori parametrized by their conformal class \((a,b)\) with \(a\sim_b0^+\) deforming the homogeneous torus \(f^b\) of conformal class \((0,b)\). The variational vector field at \(f^b\) is hereby given by a non-trivial zero direction of a penalized Willmore stability operator which we show to coincide with a double point of the corresponding spectral curve. Further, we characterize for \(b\sim 1\), \(b\neq 1\) and \(a\sim_b0^+\) the family obtained by opening the “smallest” double point on the spectral curve which is heuristically the direction with the smallest increase of Willmore energy at \(f^b\). Indeed we show in [Adv. Math. 386, Article ID 107804, 47 p. (2021; Zbl 1483.53012)] that these candidates minimize the Willmore energy in their respective conformal class for \(b\sim 1\), \(b\neq 1\) and \(a\sim_b0^+\).

MSC:

53A31 Differential geometry of submanifolds of Möbius space
49Q10 Optimization of shapes other than minimal surfaces

Citations:

Zbl 1483.53012

References:

[1] Bauer, M.; Kuwert, E., Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. IMRN, 553-576 (2003) · Zbl 1029.53073
[2] Blaschke, W., Vorlesungen über Differentialgeometrie. Vol. 3 (1929), Springer-Verlag: Springer-Verlag Berlin · JFM 55.0422.01
[3] Bohle, C., Constrained Willmore tori in the 4-sphere, J. Differential Geom., 86, 71-131 (2010) · Zbl 1217.53059
[4] Bohle, C.; Leschke, K.; Pedit, F.; Pinkall, U., Conformal maps of a 2-torus into the 4-sphere, J. Reine Angew. Math., 671, 1-30 (2012) · Zbl 1261.53057
[5] Bohle, C.; Pedit, F.; Pinkall, U., The spectral curve of a quaternionic holomorphic line bundle over a 2-torus, Manuscripta Math., 130, 311-352 (2009) · Zbl 1183.58026
[6] Bryant, R., A duality theorem for Willmore surfaces, J. Differential Geom., 20, 23-53 (1984) · Zbl 0555.53002
[7] Burstall, F.; Pedit, F.; Pinkall, U., Schwarzian derivatives and flows of surfaces, Contemp. Math., 308, 39-61 (2002) · Zbl 1031.53026
[8] Chen, B. Y., Some conformal invariants of submanifolds and their applications, Boll. Unione Mat. Ital., 10, 4, 380-385 (1974) · Zbl 0321.53042
[9] Dall’Aqua, A.; Fröhlich, S.; Grunau, H.-C.; Schieweck, F., Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var., 4, 1, 1-81 (2011) · Zbl 1213.49050
[10] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions Vol II (1953), McGraw-Hill Book Company Inc.: McGraw-Hill Book Company Inc. New York · Zbl 0052.29502
[11] Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U., Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori, Invent. Math., 146, 3, 507-593 (2001) · Zbl 1038.53046
[12] Ferus, D.; Pedit, F., \( S^1\)-Equivariant minimal tori in \(S^4\) and \(S^1\)-equivariant Willmore tori in \(S^3\), Math. Z., 204, 2, 269-282 (1990) · Zbl 0722.53056
[13] Heller, L., Equivariant constrained Willmore tori in the \(3\)-sphere (2012), University of Tübingen, (Doctoral thesis)
[14] Heller, L., Constrained Willmore tori and elastic curves in \(2\)-dimensional space forms, Comm. Anal. Geom., 22, 2, 343-369 (2014) · Zbl 1295.53064
[15] Heller, L., Equivariant constrained Willmore tori in the \(3\)-sphere, Math. Z., 278, 3, 955-977 (2014) · Zbl 1305.53063
[16] L. Heller, Ch.B. Ndiaye, First explicit constrained Willmore minimizers of non-rectangular conformal class, 2021. Preprint: arXiv:1710.00533.
[17] Heller, L.; Pedit, F., Towards a constrained Willmore conjecture, (Toda, M., Willmore Energy and Willmore Conjecture (2017), Taylor & Francis Inc.), Preprint: arXiv:1705.03217 · Zbl 1384.53007
[18] Kilian, M.; Schmidt, M. U.; Schmitt, N., On stability of equivariant minimal tori in the 3-sphere, J. Geom. Phys., 85, 171-176 (2014) · Zbl 1297.53042
[19] Kilian, M.; Schmidt, M. U.; Schmitt, N., Flows of constant mean curvature tori in the 3-sphere: the equivariant case, J. Reine Angew. Math., 707, 45-86 (2015) · Zbl 1329.53087
[20] Koecher, M.; Krieg, A., Elliptische Funktionen und Modulformen (2007), Springer-Verlag Berlin Heidelberg · Zbl 1129.11001
[21] Kuwert, E.; Li, Y., \( W^{2 , 2}\)-conformal immersions of a closed Riemann surface into \(\mathbb{R}^n\), Comm. Anal. Geom., 20, 2, 313-340 (2012) · Zbl 1271.53010
[22] Kuwert, E.; Lorenz, J., On the stability of the CMC Clifford tori as constrained Willmore surfaces, Ann. Global Anal. Geom., 44, 1, 23-42 (2013) · Zbl 1273.53005
[23] Kuwert, E.; Schätzle, R., Minimizers of the Willmore functional under fixed conformal class, J. Differential Geom., 93, 471-530 (2013) · Zbl 1276.53010
[24] Li, P.; Yau, S. T., A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69, 269-291 (1982) · Zbl 0503.53042
[25] Marques, F.; Neves, A., Min-max theory and the Willmore conjecture, Ann. of Math., 179, 683-782 (2014) · Zbl 1297.49079
[26] Mondino, A.; Rivière, T., Willmore spheres in compact Riemannian manifolds, Adv. Math., 232, 608-676 (2013) · Zbl 1294.30046
[27] Montiel, S.; Ros, A., Minimal immersion of surfaces by the first eigenfunction and conformal area, Invent. Math., 83, 153-166 (1986) · Zbl 0584.53026
[28] Ndiaye, C. B.; Schätzle, R. M., Explicit conformally constrained Willmore minimizers in arbitrary codimension, Calc. Var. Partial Differential Equations, 51, 1-2, 291-314 (2014) · Zbl 1302.53012
[29] Ndiaye, C. B.; Schätzle, R. M., New examples of conformally constrained Willmore minimizers of explicit type, Adv. Calc. Var., 8, 4, 291-319 (2015) · Zbl 1325.53012
[30] Pinkall, U., Hopf tori in \(S^3\), Invent. Math., 81, 2, 379-386 (1985) · Zbl 0585.53051
[31] Rivière, T., Analysis aspects of the Willmore functional, Invent. Math., 174, 1, 1-45 (2008) · Zbl 1155.53031
[32] Rivière, T., Variational principles for immersed surfaces with \(L^2 -\) bounded second fundamental form, J. Reine Angew. Math., 695, 41-98 (2014) · Zbl 1304.49095
[33] Rivière, T., Weak immersions of surfaces with \(L^2\)-bounded second fundamental form, (Geometric Analysis. Geometric Analysis, IAS/Park City Math. Ser., vol. 22 (2016), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 303-384 · Zbl 1359.53002
[34] Ros, A., The Willmore conjecture in the real projective space, Math. Res. Lett., 6, 487-493 (1999) · Zbl 0951.53044
[35] Schätzle, R., Conformally constrained Willmore immersions, Adv. Calc. Var., 6, 4, 375-390 (2013) · Zbl 1282.53007
[36] Schmidt, M. U., A proof of the Willmore conjecture (2002), Preprint: arXiv:math/0203224
[37] Simon, L., Existence of surfaces minimizing the Willmore functional, Commun. Anal. and Geom., 1, 281-326 (1993) · Zbl 0848.58012
[38] Topping, P., Towards the Willmore conjecture, Calc. Var., 11, 361-393 (2000) · Zbl 1058.53060
[39] Willmore, T., Note on embedded surfaces, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 11, 493-496 (1965) · Zbl 0171.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.