×

The regular free boundary in the thin obstacle problem for degenerate parabolic equations. (English) Zbl 1469.35072

St. Petersbg. Math. J. 32, No. 3, 449-480 (2021) and Algebra Anal. 32, No. 3, 84-126 (2020).
In this paper the authors prove the existence, optimal regularity of solutions, and regularity of the free boundary near regular points in a thin obstacle problem arising as the local extension of the obstacle problem for the fractional heat operator \((\partial_t-\Delta_x)^s\), for \(s\in (0,1)\).
More precisely, the operator in question is \[\mathcal{L}_aU=|y|^a\partial_tU-\text{div}_X(|y|^a\nabla_XU),\] with \(a\in(-1,1)\). Here \(X=(x,y)\in\mathbb{R}^n\times\mathbb{R}\) and \(t\in \mathbb{R}\). Given a domain \(\mathbb{D}\subset\mathbb{R}^{n+1}\) that is symmetric in \(y\), define \(\mathbb{D}^{\pm}=\mathbb{D}\cap\{\pm y>0\}\) and \(D=\mathbb{D}\cap\{y=0\}\). The thin obstacle is denoted with \(\psi\), defined on \(D\times[t_0,T]\), for \(t_0<T\), and the obstacle problem considered consists of finding a function \(U\) in \(\mathbb{D}^{\pm}\times(t_0,T]\) such that \[\begin{cases} \mathcal{L}_aU=0 \text{ in } \mathbb{D}^{+}\times(t_0,T],\\ \min\{U(x,0,t)-\psi(x,t), -\partial_y^aU(x,0,t) =0 \text{ on } D\times(t_0,T]. \end{cases} \] Here \(\partial_y^aU(x,0,t)=\lim\limits_{y\rightarrow 0+}y^a\partial_yU(x,y,t)\).
Lateral boundary conditions are imposed: \[ \begin{cases} U(X,t_0)=\varphi_0(X) \text{ on } \mathbb{D}^+,\\ U=g \text{ on } (\partial\mathbb{D})^+\times(t_0,T), \end{cases}\] under the compatibility assumptions \(\varphi_0=g(\cdot,t_0)\) on \((\partial\mathbb{D})^+\), \(\varphi_0\ge \psi(\cdot, t_0)\) on \(D\), and \(g\ge \psi\) on \(\partial D\times(t_0,T)\).
A key ingredient in the proofs is the boundedness of the time-derivative of the solution, which allows the authors to reduce the problem to an elliptic thin obstacle problem at every fixed time level. The authors then use results from elliptic theory, among them a truncated Almgren type frequency formula, a Weiss-type monotonicity formula and an epiperimetric inequality, to obtain the optimal regularity of solutions, along with the \(H^{1+\gamma,\frac{1+\gamma}{2}}\) regularity of the free boundary near regular points.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K85 Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators
35R11 Fractional partial differential equations
35R35 Free boundary problems for PDEs

References:

[1] Ath82 I. Athanasopoulos, Regularity of the solution of an evolution problem with inequalities on the boundary, Comm. Partial Differential Equations 7 (1982), no. 12, 1453-1465. 679950 · Zbl 0537.35043
[2] ACM I. Athanasopoulos, L. Caffarelli, and E. Milakis, On the regularity of the non-dynamic parabolic fractional obstacle problem, J. Differential Equations 265 (2018), no. 6, 2614-2647. 3804726 · Zbl 1394.35588
[3] ACM1 \bysame Parabolic obstacle problems, quasi-convexity and regularity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 2, 781-825. 3964414 · Zbl 1432.35264
[4] ACS I. Athanasopoulos, L. Caffarelli, and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), no. 2, 485-498. 2405165 · Zbl 1185.35339
[5] AU88 A. A. Arkhipova and N. N. Ural\textprime tseva, Regularity of the solution of a problem with a two-sided limit on a boundary for elliptic and parabolic equations, Trudy Mat. Inst. Steklov. 179 (1988), 5-22; English transl., Proc. Steklov Inst. Math. 1989, no. 2, 1-19. 964910 · Zbl 0711.35023
[6] AT A. Audrito and S. Terracini, On the nodal set of solutions to a class of nonlocal parabolic reaction-diffusion equations, arXiv:1807.10135, 2018.
[7] BG A. Banerjee and M. Garofalo, Monotonicity of generalized frequencies and the strong unique continuation property for fractional parabolic equations, Adv. Math. 336 (2018), 149-241. 3846151 · Zbl 1400.35045
[8] BDGP2 A. Banerjee, D. Danielli, N. Garofalo, and A. Petrosyan, The structure of the singular set in the thin obstacle problem for degenerate parabolic equations, arXiv:1902.07457, 2019.
[9] Caff L. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189-213. 1005611 · Zbl 0692.35017
[10] CDS L. Caffarelli, D. De Silva, and O. Savin, The two membranes problem for different operators, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire 34 (2017), no. 4, 899-932. 3661864 · Zbl 1368.35045
[11] CSS L. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461. 2367025 · Zbl 1148.35097
[12] CSe F. Chiarenza and R. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations., Rend. Sem. Mat. Univ. Padova 73 (1985), 179-190. 799906 · Zbl 0588.35013
[13] DGPT D. Danielli, N. Garofalo, A. Petrosyan, and T. To, Optimal regularity and the free boundary in the parabolic Signorini problem, Mem. Amer. Math. Soc. 249 (2017), no. 1181, 1-103. 3709717 · Zbl 1381.35249
[14] DL G. Duvaut and J.-L. Lions, Les in\'equations en m\'ecanique et en physique, Trav. Recherches Math., no. 21, Dunod, Paris, 1972. 0464857 · Zbl 0298.73001
[15] FS1 M. Focardi and E. Spadaro, The local structure of the free boundary in the fractional obstacle problem, arXiv:1903.05909, 2019.
[16] FS2 \bysame , On the measure and the structure of the free boundary of the lower dimensional obstacle problem, Arch. Rational Mech. Anal. 230 (2018), no. 1, 125-184. 3840912 · Zbl 1405.35257
[17] FS3 \bysame , An epiperimetric inequality for the thin obstacle problem, Adv. Differential Equations 21 (2016), no. 1-2, 153-200. 3449333 · Zbl 1336.35370
[18] GP N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 415-461. 2511747 · Zbl 1175.35154
[19] GPG N. Garofalo, A. Petrosyan, and M. Smit Vega Garcia, An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. J. Math. Pures Appl. (9) 105 (2016), no. 6, 745-787. 3491531 · Zbl 1341.35036
[20] GPPS N. Garofalo, A. Petrosyan, C. A. Pop, and M. Smit Vega Garcia, Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift, Ann. Inst. H. Poincar\'e Anal. Non Lin\'aire 34 (2017), no. 3, 533-570. 3633735 · Zbl 1365.35230
[21] GRO N. Garofalo and X. Ros-Oton, Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian, Rev. Mat. Iberoam. 35 (2019), no. 5, 1309-1365. 4018099 · Zbl 1433.35466
[22] GG N. Garofalo and M. Smit Vega Garcia, New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients, Adv. Math. 262 (2014), 682-750. 3228440 · Zbl 1295.35155
[23] KRS H. Koch, A. R\"uland, and W. Shi, Higher regularity for the fractional thin obstacle problem, arXiv:1605.06662, 2016.
[24] Ne A. Nekvinda, Characterization of traces of the weighted Sobolev space \(W^1,p(\Omega ,d^M)\) on \(M\), Czechoslovak Math. J. 43 (1993), 695-711. 1258430 · Zbl 0832.46026
[25] NS K. Nystr\"om and O. Sande, Extension properties and boundary estimates for a fractional heat operator, Nonlinear Anal. 140 (2016), 29-37. 3492726 · Zbl 1381.35230
[26] PP A. Petrosyan and C. A. Pop, Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift, J. Funct. Anal. 268 (2015), no. 2, 417-472. 3283160 · Zbl 1366.35223
[27] PZ A. Petrosyan and A. Zeller, Boundedness and continuity of the time derivative in the parabolic Signorini problem, Math. Res. Lett. 26 (2019), no. 1, 281-292. 3963984 · Zbl 1412.35185
[28] Shi W. Shi, An epiperimetric inequality approach to the parabolic Signorini problem, arXiv:1810.11791, 2018. · Zbl 1448.35585
[29] STT Y. Sire, S. Terracini, and G. Tortone, On the nodal set of solutions to degenerate or singular elliptic equations with an application to \(s\)-harmonic functions, arXiv:1808.01851 (2018). 4163134
[30] ST P. R. Stinga and J. L. Torrea, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation, SIAM J. Math. Anal., 49 (2017), no. 5, 3893-3924. 3709888 · Zbl 1386.35419
[31] STV Y. Sire, S. Terracini, and S. Vita, Liouville type theorems and regularity of solutions to degenerate or singular problems Part I. Even solutions, arXiv:1904.02143, 2019.
[32] Ura85 N. N. Ural\textprime tseva, H\"older continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type, Dokl. Akad. Nauk SSSR 280 (1985), no. 3, 563-565; English transl., Sov. Math. Dokl. 31 (1985), 135-138. 775926 · Zbl 0629.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.