×

Dominant dynamics for a class of singularly perturbed stochastic partial differential equations with quadratic nonlinearities and random Neumann boundary conditions. (English) Zbl 1468.35241

Summary: This work concerns the effective approximation for a class of singularly perturbed stochastic partial differential equations driven by a sufficiently small multiplicative noise with quadratic nonlinearities and random Neumann boundary conditions. By splitting the solution into two parts in the finite dimension kernel space and its complement space with some suitable multi-scale argument, it derives rigorously the dominant dynamics, which captures the essential dynamics of the original system as a singular parameter is enough small.
©2021 American Institute of Physics

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35B25 Singular perturbations in context of PDEs
Full Text: DOI

References:

[1] Blömker, D.; Fu, H. B., The impact of multiplicative noise in SPDEs close to bifurcation via amplitude equations, Nonlinearity, 33, 3905-3927 (2020) · Zbl 1464.60058 · doi:10.1088/1361-6544/ab801e
[2] Blömker, D.; Hairer, M.; Pavliotis, G. A., Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20, 1721-1744 (2007) · Zbl 1138.60004 · doi:10.1088/0951-7715/20/7/009
[3] Blömker, D.; Mohammed, W. W., Amplitude equations for SPDEs with cubic nonlinearities, Stochastics, 85, 181-215 (2013) · Zbl 1291.60127 · doi:10.1080/17442508.2011.624628
[4] Blömker, D.; Mohammed, W. W., Amplitude equation for SPDEs with quadratic nonlinearities, Electron. J. Probab., 14, 2527-2550 (2009) · Zbl 1197.60061 · doi:10.1214/EJP.v14-716
[5] Cuerno, Z. R.; Barabási, A. L., Dynamic scaling of ion-sputtered surfaces, Phys. Rev. Lett., 74, 4746-4749 (1995) · doi:10.1103/PhysRevLett.74.4746
[6] Courant, R.; Hilbert, D., Methoden der Mathematischen Physik (1993), Springer-Verlag: Springer-Verlag, Berlin · JFM 63.0449.05
[7] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851-1112 (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[8] Chekhlov, A.; Yakhot, V., Kolmogorov turbulence in a random-force-driven Burgers equation: Anomalous scaling and probability density functions, Phys. Rev. E, 52, 5681-5684 (1995) · doi:10.1103/PhysRevE.52.5681
[9] Doelman, A.; Sandstede, B.; Scheel, A.; Schneider, G., The dynamics of modulated wave trains, Mem. Am. Math. Soc., 199, 1-105 (2009) · Zbl 1179.35005 · doi:10.1090/memo/0934
[10] Duan, J. Q.; Wang, W., Effective Dynamics of Stochastic Partial Differential Equations (2014), Elsevier: Elsevier, Amsterdam · Zbl 1298.60006
[11] da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems (1996), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0849.60052
[12] da Prato, G.; Zabczyk, J., Evolution equations with white-noise boundary conditions, Stoch. Stoch. Rep., 42, 167-182 (1993) · Zbl 0814.60055 · doi:10.1080/17442509308833817
[13] da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0761.60052
[14] Kirrmann, P.; Schneider, G.; Mielke, A., The validity of modulation equations for extended systems with cubic nonlinearities, Proc. R. Soc. Edinburgh, 122, 85-91 (1992) · Zbl 0786.35122 · doi:10.1017/S0308210500020989
[15] Lauritsen, K. B.; Cuerno, R.; Makse, H. A., Noisy Kuramoto-Sivashinsky equation for an erosion model, Phys. Rev. E, 54, 3577-3580 (1996) · doi:10.1103/PhysRevE.54.3577
[16] Mohammed, W. W., Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions, Math. Method Appl. Sci., 38, 4867-4878 (2015) · Zbl 1334.60113 · doi:10.1002/mma.3402
[17] Mohammed, W. W.; Blömker, D., Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations, Stoch. Anal. Appl., 34, 961-978 (2016) · Zbl 1350.60060 · doi:10.1080/07362994.2016.1197131
[18] Mohammed, W. W.; Blömker, D.; Klepel, K., Multi-scale analysis of SPDEs with degenerate additive noise, J. Evol. Equ., 14, 273-298 (2014) · Zbl 1294.60089 · doi:10.1007/s00028-013-0213-3
[19] Schneider, G., The validity of generalized Ginzburg-Landau equations, Math. Methods Appl. Sci., 19, 717-736 (1996) · Zbl 0874.35050 · doi:10.1002/(SICI)1099-1476(199606)19:9<717::AID-MMA792>3.0.CO;2-Z
[20] Schneider, G.; Uecker, H., The amplitude equations for the first instability of electro-convection in nematic liquid crystals in the case of two unbounded space directions, Nonlinearity, 20, 1361-1386 (2007) · Zbl 1116.76030 · doi:10.1088/0951-7715/20/6/003
[21] Sun, X.; Duan, J.; Li, X., An impact of noise on invariant manifolds in nonlinear dynamical systems, J. Math. Phys., 51, 042702 (2010) · Zbl 1310.34096 · doi:10.1063/1.3371010
[22] Taigbenu, A. E., Burgers Equation (1999), Springer: Springer, New York · Zbl 0978.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.