×

Hall algebras and graphs of Hecke operators for elliptic curves. (English) Zbl 1468.14033

The main objects of study of the present article are graphs of Hecke operators. These are combinatorial objects, defined in [R. Alvarenga, J. Number Theory 199, 192–228 (2019; Zbl 1454.11093)], which encode the action of Hecke operators on \(GL_n\)-automorphic forms over the function field of a smooth projective geometrically irreducible curve \(X\) over a finite field.
The author reformulates the question of computing graphs of Hecke operators in terms of computing certain products inside the Hall algebra \(\mathbf{H}_X\) of the category of coherent sheaves on \(X\). When \(X\) is an elliptic curve, the Hall algebra \(\mathbf{H}_X\) was extensively studied in [I. Burban and O. Schiffmann, Duke Math. J. 161, No. 7, 1171–1231 (2012; Zbl 1286.16029)], [D. Fratila, Compos. Math. 149, No. 6, 914–958 (2013; Zbl 1355.11061)]. Using rich structural results found in the references above, the author describes an algorithm for computing the graphs of Hecke operators when \(X\) is elliptic. The main idea behind this algorithm is rewriting everything in terms of a nice basis of \(\mathbf{H}_X\) (see Theorem 3.14), doing computations there, and reinterpreting the result in terms of automorphic forms.
The author also illustrates how the algorithm functions by computing the graph of Hecke operators \(\mathcal{G}_{x,1}\) of degree 1 for \(n=2\), and by providing some partial results for \(n>2\).

MSC:

14F06 Sheaves in algebraic geometry
11F32 Modular correspondences, etc.
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
14H60 Vector bundles on curves and their moduli
17B37 Quantum groups (quantized enveloping algebras) and related deformations
14H52 Elliptic curves
16T05 Hopf algebras and their applications
11F25 Hecke-Petersson operators, differential operators (one variable)

References:

[1] Alvarenga, R., On graphs of Hecke operators, Journal of Number Theory, 199, 192-228 (2019) · Zbl 1454.11093
[2] Arason, J. K.; Elman, R.; Jacob, B., On indecomposable vector bundles, Communications in Algebra, 20, 1323-1351 (1992) · Zbl 0769.14004
[3] Atiyah, M., On the Krull-Schmidt theorem with application to sheaves, Bulletin de la Société Mathématique de France, 84, 307-317 (1956) · Zbl 0072.18101
[4] Atiyah, M., Vector bundles over an elliptic curve, Proceedings of the London Mathematical Society, 7, 414-452 (1957) · Zbl 0084.17305
[5] Baumann, P.; Kassel, C., The Hall algebra of the category of coherent sheaves on the projective line, Journal für die Reine und Angewandte Mathematik, 533, 207-233 (2001) · Zbl 0967.18005
[6] Brüning, K.; Burban, I., Coherent sheaves on an elliptic curve, Interactions Between Homotopy Theory and Algebra, 297-315 (2007), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1127.14306
[7] Burban, I.; Schiffmann, O., On the Hall algebra of an elliptic curve, I, Duke Mathematical Journal, 161, 1171-1231 (2012) · Zbl 1286.16029
[8] Fratila, D., Cusp eigenforms and the Hall algebra of an elliptic curve, Compositio Mathematica, 149, 914-958 (2013) · Zbl 1355.11061
[9] Harder, G.; Narasimhan, M. S., On the cohomology groups of moduli spaces of vector bundles on curves, Mathematische Annalen, 212, 215-248 (1974) · Zbl 0324.14006
[10] Hartshorne, R., Algebraic Geometry (1977), New York-Heidelberg: Springer, New York-Heidelberg · Zbl 0367.14001
[11] Kapranov, M. M., Eisenstein series and quantum affine algebras, Journal of Mathematical Sciences (New York), 84, 1311-1360 (1997) · Zbl 0929.11015
[12] Lang, S., Algebraic groups over finite fields, American Journal of Mathematica, 78, 555-563 (1956) · Zbl 0073.37901
[13] Liu, Q., Algebraic Geometry and Arithmetic Curves (2002), Oxford: Oxford University Press, Oxford · Zbl 0996.14005
[14] O. Lorscheid, Toroidal Automorphic Forms for Function Fields, PhD. Thesis, University of Utrecht, http://w3.impa.br/ lorschei/thesis.pdf. · Zbl 1295.11051
[15] Lorscheid, O., Automorphic forms for elliptic function fields, Mathematische Zeitschrift, 272, 885-911 (2012) · Zbl 1267.11053
[16] Lorscheid, O., Graphs of Hecke operators, Algebra & Number Theory, 7, 19-61 (2013) · Zbl 1292.11061
[17] Macdonald, I. G., Symmetric Functions and Hall Polynomials (2015), New York: The Clarendon Press, Oxford University Press, New York · Zbl 1332.05002
[18] Pick, G., Geometrisches zur zahlenlehre, Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos” in Prag, 47, 311-319 (1889)
[19] Ringel, C. M., Hall algebras and quantum groups, Inventiones Mathematicae, 101, 583-591 (1990) · Zbl 0735.16009
[20] Schiffmann, O., Lectures on Hall algebras, Geometric Methods in Representation Theory. II, 1-141 (2012), Paris: Société Mathématique de France, Paris · Zbl 1309.18012
[21] Serre, J-P, Trees (2003), Berlin: Springer, Berlin
[22] Silverman, J. H., The arithmetic of elliptic curves (2009), Dordrecht: Springer, Dordrecht · Zbl 1194.11005
[23] Zagier, D., Eisenstein series and the Riemann zeta function, Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), 275-301 (1981), Bombay: Tata Institute of Fundamental Research, Bombay · Zbl 0484.10019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.