×

Cameron-Liebler sets in bilinear forms graphs. (English) Zbl 1466.05022

Summary: Cameron-Liebler sets of subspaces in projective spaces were studied recently by A. Blokhuis et al. [ibid. 87, No. 8, 1839–1856 (2019; Zbl 1414.05313)]. In this paper, we discuss Cameron-Liebler sets in bilinear forms graphs, obtain several equivalent definitions and present some classification results.

MSC:

05B25 Combinatorial aspects of finite geometries
51E20 Combinatorial structures in finite projective spaces
05E30 Association schemes, strongly regular graphs
51E14 Finite partial geometries (general), nets, partial spreads
51E30 Other finite incidence structures (geometric aspects)

Citations:

Zbl 1414.05313

References:

[1] Bailey R.A., Cameron P.J., Gavrilyuk A.L., Goryainov S.V.: Equitable partitions of Latin-square graphs. J. Combin. Des. (2018). doi:10.1002/jcd21634. · Zbl 1421.05024
[2] Bamberg, J.; Kelly, S.; Law, M.; Penttila, T., Tight sets and \(m\)-ovoids of finite polar spaces, J. Combin. Theory Ser. A, 114, 1293-1314 (2007) · Zbl 1124.51003 · doi:10.1016/j.jcta.2007.01.009
[3] Beutelspacher, A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. (Basel) 31, 202-208 (1978/1979) · Zbl 0377.50006
[4] Blokhuis, A.; De Boeck, M.; D’haeseleer, J., Cameron-Liebler sets of \(k\)-spaces in PG \((n,q)\), Des. Codes Cryptogr., 87, 1839-1856 (2019) · Zbl 1414.05313 · doi:10.1007/s10623-018-0583-1
[5] Brouwer, AE; Cohen, AM; Neumaier, A., Distance-Regular Graphs (2012), Berlin: Springer, Berlin · Zbl 0747.05073
[6] Bruen, AA; Drudge, K., The construction of Cameron-Liebler line classes in PG \((3, q)\), Finite Fields Appl., 5, 35-45 (1999) · Zbl 0927.51012 · doi:10.1006/ffta.1998.0239
[7] Cameron, PJ; Liebler, RA, Tactical decompositions and orbits of projective groups, Linear Algebra Appl., 46, 91-102 (1982) · Zbl 0504.05015 · doi:10.1016/0024-3795(82)90029-5
[8] De Beule, J.; Demeyer, J.; Metsch, K.; Rodgers, M., A new family of tight sets in \(Q^+(5, q)\), Des. Codes Cryptogr., 78, 655-678 (2016) · Zbl 1336.51002 · doi:10.1007/s10623-014-0023-9
[9] De Boeck, M.: Intersection problems in finite geometries. PhD thesis, Ghent University (2014) http://cage.ugent.be/geometry/theses.php
[10] De Boeck, M.; Storme, L.; Švob, A., The Cameron-Liebler problem for sets, Discret. Math., 339, 470-474 (2016) · Zbl 1327.05326 · doi:10.1016/j.disc.2015.09.024
[11] De Boeck, M.; Rodgers, M.; Storme, L.; Švob, A., Cameron-Liebler sets of generators in finite classical polar spaces, J. Combin. Theory Ser. A, 167, 340-388 (2019) · Zbl 1437.51009 · doi:10.1016/j.jcta.2019.05.005
[12] De Bruyn, B.; Suzuki, H., Intriguing sets of vertices of regular graphs, Graphs Combin., 26, 629-646 (2010) · Zbl 1230.05297 · doi:10.1007/s00373-010-0924-y
[13] Delsarte, P., Properties and applications of the recurrence \(F(i+1, k+1, n+1)=q^{k+1}F(i, k+1, n)-q^kF(i, k, n)\), SIAM J. Appl. Math., 31, 262-270 (1976) · Zbl 0353.42010 · doi:10.1137/0131021
[14] Dembowski, P., Finite Geometries (1968), New York: Springer, New York · Zbl 0159.50001 · doi:10.1007/978-3-642-62012-6
[15] Deng, S.; Li, Q., On the affine geometry of algebraic homogeneous spaces, Acta Math. Sinica., 15, 651-663 (1965)
[16] Esser, F.; Harary, F., On the spectrum of a complete multipartite graph, Eur. J. Combin., 1, 211-218 (1980) · Zbl 0454.05045 · doi:10.1016/S0195-6698(80)80004-7
[17] Feng, T.; Momihara, K.; Xiang, Q., Cameron-Liebler line classes with parameter \(x=\frac{q^2-1}{2} \), J. Combin. Theory Ser. A, 133, 307-338 (2015) · Zbl 1352.05195 · doi:10.1016/j.jcta.2015.02.004
[18] Filmus, Y.; Ihringer, F., Boolean degree 1 functions on some classical association schemes, J. Combin. Theory Ser. A, 162, 241-270 (2019) · Zbl 1401.05317 · doi:10.1016/j.jcta.2018.11.006
[19] Gavrilyuk, AL; Mogilnykh, IY, Cameron-Liebler line classes in PG \((n,4)\), Des. Codes Cryptogr., 73, 969-982 (2014) · Zbl 1305.51008 · doi:10.1007/s10623-013-9838-z
[20] Gavrilyuk, AL; Matkin, I.; Pentilla, T., Derivation of Cameron-Liebler line classes, Des. Codes Cryptogr., 86, 231-236 (2018) · Zbl 1393.51003 · doi:10.1007/s10623-017-0338-4
[21] Gong, C.; Lv, B.; Wang, K., The Hilton-Milner theorem for the distance-regular graphs of bilinear forms, Linear Algebra Appl., 515, 130-144 (2017) · Zbl 1352.05181 · doi:10.1016/j.laa.2016.11.016
[22] Hirschfeld, JWP; Thas, JA, General Galois Geometries. Oxford Mathematical Monographs (1991), Oxford: Oxford University Press, Oxford · Zbl 0789.51001
[23] Ihringer, F.: Remarks on the Erdős matching conjecture for vector spaces. arXiv:2002.06601v3. · Zbl 1461.52017
[24] Lv, B.; Wang, K., The energy of \(q\)-Kneser graphs and attenuated \(q\)-Kneser graphs, Discret. Appl. Math., 161, 2079-2083 (2013) · Zbl 1286.05096 · doi:10.1016/j.dam.2013.03.013
[25] Martin, WJ, Completely regular designs of strength one, J. Algebr. Combin., 3, 177-185 (1994) · Zbl 0799.05012 · doi:10.1023/A:1022493523470
[26] Metsch, K., The non-existence of Cameron-Liebler line classes with parameter \(2<x<q\), Bull. Lond. Math. Soc., 42, 991-996 (2010) · Zbl 1213.51008 · doi:10.1112/blms/bdq057
[27] Metsch, K., An improved bound on the existende of Cameron-Liebler line classes, J. Combin. Theory Ser. A, 121, 89-93 (2014) · Zbl 1284.51008 · doi:10.1016/j.jcta.2013.09.004
[28] Metsch, K., A gap result for Cameron-Liebler \(k\)-classes, Discret. Math., 340, 1311-1318 (2017) · Zbl 1375.51006 · doi:10.1016/j.disc.2017.02.004
[29] Rodgers, M., Cameron-Liebler line classes, Des. Codes Cryptogr., 68, 33-37 (2013) · Zbl 1276.51003 · doi:10.1007/s10623-011-9581-2
[30] Rodgers, M.; Storme, L.; Vansweevelt, A., Cameron-Liebler \(k\)-classes in PG \((2k+1, q)\), Combinatorica, 38, 739-757 (2018) · Zbl 1424.51005 · doi:10.1007/s00493-016-3482-y
[31] Tanaka, H., Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. Combin. Theory Ser. A, 113, 903-910 (2006) · Zbl 1092.05075 · doi:10.1016/j.jcta.2005.08.006
[32] Wan, Z., Geometry of Classical Groups over Finite Fields (2002), Beijing: Science Press, Beijing
[33] Wang, K.; Guo, J.; Li, F., Association schemes based on attenuated spaces, Eur. J. Combin., 31, 297-305 (2010) · Zbl 1228.05321 · doi:10.1016/j.ejc.2009.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.