×

A second-order finite element method with mass lumping for Maxwell’s equations on tetrahedra. (English) Zbl 1464.35341

Summary: We consider the numerical approximation of Maxwell’s equations in the time domain by a second-order \(H(\mathrm{curl})\) conforming finite element approximation. In order to enable the efficient application of explicit time-stepping schemes, we utilize a mass-lumping strategy resulting from numerical integration in conjunction with the finite element spaces introduced in [A. Elmkies and P. Joly, C. R. Acad. Sci., Paris, Sér. I, Math. 325, No. 11, 1217–1222 (1997; Zbl 0893.65068)]. We prove that this method is second-order accurate if the true solution is divergence free but the order of accuracy reduces to one in the general case. We then propose a modification of the finite element space, which yields second-order accuracy in the general case.

MSC:

35Q61 Maxwell equations
78A25 Electromagnetic theory (general)
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0893.65068

References:

[1] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer-Verlag, Berlin, 2013. · Zbl 1277.65092
[2] F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed elements for second order elliptic problems, Numer. Math., 88 (1985), pp. 217-235. · Zbl 0599.65072
[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4. North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[4] L. Codecasa and M. Politi, Explicit, consistent, and conditionally stable extension of FD-TD to tetrahedral grids by FIT, IEEE Trans. Magn., 44 (2008), pp. 1258-1261.
[5] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer-Verlag, Berlin, 2002. · Zbl 0985.65096
[6] G. Cohen and P. Monk, Gauss point mass lumping schemes for Maxwell’s equations, Numer. Methods Partial Differential Equations, 14 (1998), pp. 63-88. · Zbl 0891.65130
[7] T. Dupont, \({L}^2\) estimates for Galerkin methods for second-order hyperbolic equations, SIAM J. Numer. Anal., 10 (1973), pp. 880-889. · Zbl 0239.65087
[8] H. Egger and B. Radu, Super-Convergence and Post-Processing for Mixed Finite Element Approximations of the Wave Equation, preprint, arXiv:1068.03818, 2018. · Zbl 1404.65167
[9] H. Egger and B. Radu, A Mass-Lumped Mixed Finite Element Method for Acoustic Wave Propagation, preprint, arXiv:1803.04238, 2018. · Zbl 1450.65120
[10] H. Egger and B. Radu, A Mass-Lumped Mixed Finite Element Method for Maxwell’s Equations, preprint, arXiv:1810.06243, 2018.
[11] A. Elmkies and P. Joly, Éléments finis d’arête et condensation de masse pour les équations de Maxwell: Le cas de dimension 3, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), pp. 1217-1222. · Zbl 0893.65068
[12] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[13] S. Geevers, W. Mulder, and J. van der Vegt, New higher-order mass-lumped tetrahedral elements for wave propagation modelling, SIAM J. Sci. Comput., 40 (2018), pp. A2830-A2857. · Zbl 1397.65158
[14] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods, Texts Appl. Math. 54, Springer-Verlag, Berlin, 2008. · Zbl 1134.65068
[15] J. D. Jackson, Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York, 1975. · Zbl 0997.78500
[16] P. Joly, Variational methods for time-dependent wave propagation problems, in Topics in Computational Wave Propagation, Lect. Notes Comput. Sci. Eng. 31, Springer-Verlag, Berlin, pp. 201-264. · Zbl 1049.78028
[17] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Springer Fachmedien, Wiesbaden, Germany, 1985. · Zbl 0887.35148
[18] C. G. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell’s equations, RAIRO Model. Math. Anal. Numer., 29 (1995), pp. 171-197. · Zbl 0834.65120
[19] P. Monk, Analysis of a finite element methods for Maxwell’s equations, SIAM J. Numer. Anal., 29 (1992), pp. 714-729. · Zbl 0761.65097
[20] P. Monk, An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations, J. Comput. Appl. Math., 47 (1993), pp. 101-121. · Zbl 0784.65091
[21] J. C. Nedelec, Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer-Verlag, Berlin, 1983. · Zbl 0516.47023
[23] R. Schuhmann and T. Weiland, A stable interpolation technique for FDTD on non-orthogoanl grids, 11 (1998), pp. 299-306. · Zbl 0926.65092
[24] T. Weiland, A discretization model for the solution of Maxwell’s equations for six-component fields, Arch. Elektron. Uebertragungstech., 31 (1977), pp. 116-120.
[25] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, AP-16 (1966), pp. 302-307. · Zbl 1155.78304
[26] S. Zaglmayr, High Order Finite Elements for Electromagnetic Field Computation, Ph.D. thesis, Johannes Kepler University Linz, Austria, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.