×

On the nonlinear Dysthe equation. (English) Zbl 1464.35224

Summary: This work is dedicated to putting on a solid analytic ground the theory of local well-posedness for the two dimensional Dysthe equation. This equation can be derived from the incompressible Navier-Stokes equation after performing an asymptotic expansion of a wavetrain modulation to the fourth order. Recently, this equation has been used to numerically study rare phenomena on large water bodies such as rogue waves. In order to study well-posedness, we use Strichartz, and improved smoothing and maximal function estimates. We follow ideas from the pioneering work of Kenig, Ponce and Vega, but since the equation is highly anisotropic, several technical challenges had to be resolved. We conclude our work by also presenting an ill-posedness result.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
35B65 Smoothness and regularity of solutions to PDEs
35B50 Maximum principles in context of PDEs
35C20 Asymptotic expansions of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Arnold, A.; Kim, J.; Yao, X., Estimates for a class of oscillatory integrals and decay rates for wave-type equations, J. Math. Anal. Appl., 394, 1, 139-151 (2012) · Zbl 1248.35032
[2] Bejenaru, I., Global results for Schrödinger maps in dimensions \(n \geq 3\), Comm. Partial Differential Equations, 33, 451-477 (2008) · Zbl 1148.35083
[3] Bejenaru, I.; Ionescu, A. D.; Kenig, C. E., Global existence and uniqueness of Schrödinger maps in dimensions \(d \geq 4\), Adv. Math., 215, 263-291 (2007) · Zbl 1152.35049
[4] Bejenaru, I.; Ionescu, A. D.; Kenig, C. E.; Tataru, D., Global Schrödinger maps in dimensions \(d \geq 2\): Small data in the critical Sobolev spaces, Ann. of Math., 173, 1443-1506 (2011) · Zbl 1233.35112
[5] Ben-Artzi, M.; Koch, H.; Saut, J.-C., Dispersion estimates for third order equations in two dimensions, Comm. Partial Differential Equations, 28, 11-12, 1943-1974 (2003) · Zbl 1060.35122
[6] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations, Geom. Funct. Anal., 3, 2, 107-156 (1993) · Zbl 0787.35097
[7] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation, Geom. Funct. Anal., 3, 3, 209-262 (1993) · Zbl 0787.35098
[8] Christ, M.; Weinstein, M. I., Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, 87-109 (1991) · Zbl 0743.35067
[9] Cousins, W.; Sapsis, T. P., Reduced-order precursors of rare events in unidirectional nonlinear water waves, J. Fluid Mech., 790, 368-388 (2016) · Zbl 1382.76030
[10] Craig, W.; Guyenne, P.; Sulem, C., Normal form transformations and Dysthe equation for the nonlinear modulation of deep-water gravity waves, Water Waves (2020)
[11] Dematteis, G.; Grafke, T.; Vanden-Eijnden, E., Rogue waves and large deviations in deep sea, Proc. Natl. Acad. Sci. USA, 115, 5, 855-860 (2018) · Zbl 1416.76021
[12] Ding, Yong; Yao, Xiaohua, Lp-Lq estimates for dispersive equations and related applications, J. Math. Anal. Appl., 356, 2, 711-728 (2009) · Zbl 1167.35009
[13] Dysthe, K. B., Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369, 105-114 (1979) · Zbl 0429.76014
[14] Dysthe, K. B.; Krogstad, H. E.; Müller, P., Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287-310 (2008) · Zbl 1136.76009
[15] Farazmand, M.; Sapsis, T., Reduced-order prediction of rogue waves in two-dimensional deep-water waves, J. Comput. Phys., 340, 418-434 (2017) · Zbl 1376.86003
[16] Farazmand, M.; Sapsis, T., Extreme events: Mechanisms and prediction, Appl. Mech. Rev., 71, 5 (2019)
[17] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum. Part 1: General theory, J. Fluid Mech., 12, 481-500 (1961) · Zbl 0107.21402
[18] Holmer, J., Local ill-posedness of the 1D Zakharov system, Electron. J. Differential Equations, 24, 1-22 (2007) · Zbl 1115.35124
[19] Hörmander, L., (The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Classics in Mathematics (2005), Springer-Verlag Berlin Heidelberg) · Zbl 1062.35004
[20] Ionescu, A. D.; Kenig, C. E., Low-regularity Schrödinger maps, II: global well-posedness in dimensions \(d \geq 3\), Comm. Math. Phys., 271, 523-559 (2007) · Zbl 1137.35068
[21] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equation, Comm. Pure Appl. Math., 41, 891-907 (1988) · Zbl 0671.35066
[22] Keel, M.; Tao, T., Endpoint Strichartz estimates, Amer. J. Math., 120, 5, 955-980 (1998) · Zbl 0922.35028
[23] Kenig, C. E.; Ponce, G.; Vega, L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40, 1, 33-69 (1991) · Zbl 0738.35022
[24] Kenig, C. E.; Ponce, G.; Vega, L., The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1, 1-21 (1993) · Zbl 0787.35090
[25] Kenig, C. E.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 3, 255-288 (1993) · Zbl 0786.35121
[26] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 4, 527-620 (1993) · Zbl 0808.35128
[27] Kenig, C. E.; Ziesler, S. N., Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation, Commun. Pure Appl. Anal., 4, 1, 45-91 (2005) · Zbl 1084.35072
[28] Koch, H.; Saut, J.-C., Local smoothing and local solvability for third order dispersive equations, SIAM J. Math. Anal., 38, 5, 1528-1541 (2007) · Zbl 1125.35075
[29] Koch, H.; Tataru, D., Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., 58, 2, 217-284 (2005) · Zbl 1078.35143
[30] Koch, H.; Tataru, D., A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007 (2007), rnm053 · Zbl 1169.35055
[31] Kurianski, K. D., Estimates for Solutions to the Dysthe Equation and Numerical Simulations of Walking Droplets in Harmonic Potentials (2019), MIT, (Ph.D. thesis)
[32] Linares, F.; Pastor, A., Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41, 4, 1323-1339 (2009) · Zbl 1197.35242
[33] F. Linares, J. Ramos, Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation, preprint, available on arxiv.org/abs/2005.12485. · Zbl 1457.42031
[34] Molinet, L.; Pilod, D., Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 2, 347-371 (2015) · Zbl 1320.35106
[35] Mosincat, R.; Pilod, D.; Saut, J.-C., Global well-posedness and scattering for the Dysthe equation in \(L^2 ( \mathbb{R}^2 )\), J. Math. Pures Appl. (2020), https://doi.org/10.1016/j.matpur.2020.11.001, in press · Zbl 1467.35261
[36] Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. T., Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 2, 47-89 (2013)
[37] Randoux, S.; Walczak, P.; Onorato, M.; Suret, P., Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency, Physica D, 333, 323-335 (2016)
[38] Ribaud, F.; Vento, S., A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math., 350, 9-10, 499-503 (2012) · Zbl 1248.35189
[39] Ruzhansky, M.; Sugimoto, M., Smoothing estimates for non-dispersive equations, Math. Ann., 365, 241-269 (2016) · Zbl 1350.35042
[40] Safarov, A. R., Invariant estimates of two-dimensional oscillatory integrals, Math. Notes, 104, 293-302 (2018) · Zbl 1401.42016
[41] Sedletsky, Y. V., The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid, J. Exp. Theor. Phys., 97, 180-193 (2003)
[42] Tao, T., (Nonlinear Dispersive Equations: Local and Global Analysis. Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, vol. 106 (2006), AMS) · Zbl 1106.35001
[43] Vitanov, N. K.; Chabchoub, A.; Hoffmann, N., Deep-water waves: On the nonlinear Schrödinger equation and its solutions, J. Theoret. Appl. Math., 43, 43-54 (2013) · Zbl 1330.76028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.