×

Nonuniqueness of Leray-Hopf solutions for a dyadic model. (English. Russian original) Zbl 1464.35178

St. Petersbg. Math. J. 32, No. 2, 371-387 (2021); translation from Algebra Anal. 32, No. 2, 229-253 (2020).
Summary: The dyadic model \(\dot{u}_n + \lambda^{2n}u_n - \lambda^{\beta n}u_{n-1}^2 + \lambda^{\beta (n+1)}u_nu_{n+1} = f_n, u_n(0)=0\), is considered. It is shown that in the case of nontrivial right-hand side the system may have two different Leray-Hopf solutions.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
34E05 Asymptotic expansions of solutions to ordinary differential equations
35A24 Methods of ordinary differential equations applied to PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] BMR D. Barbato, F. Morandin, and M. Romito, Smooth solutions for the dyadic model, Nonlinearity 24 (2011), no. 11, 3083-3097. · Zbl 1228.76035
[2] Ch A. Cheskidov, Blow-up in finite time for the dyadic model of the Navier-Stokes equations, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5101-5120. · Zbl 1156.35073
[3] DN B. N. Desnyanskii, and E. A. Novikov, Modeling cascade processes in turbulent flows, Prikl. Mat. Meh. 38 (1974), 507-513. (Russian) · Zbl 0318.76038
[4] F N. D. Filonov, Uniqueness of the Leray-Hopf solution for a dyadic model, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8663-8684. · Zbl 1393.34026
[5] Kato T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren Math. Wiss., Bd 132, Springer-Verlag, Berlin, 1976. · Zbl 0342.47009
[6] KP02 N. H. Katz and N. Pavlovi\'c, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal. 12 (2002), no. 2, 355-379. · Zbl 0999.35069
[7] KZ A. Kiselev and A. Zlatos, On discrete models of the Euler equation, Int. Math. Res. Not. IMRN 38 (2005), 2315-2339. · Zbl 1109.35083
[8] MSch J. L. Massera and J. J. Schaffer, Linear differential equations and function spaces, Pure Appl. Math., vol. 21, Acad. Press, New York-London, 1966. · Zbl 0243.34107
[9] T T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc. 29 (2016), no. 3, 601-674. · Zbl 1342.35227
[10] W F. Waleffe, On some dyadic models of the Euler equations, Proc. Amer. Math. Soc. 134 (2006), no. 10, 2913-2922. · Zbl 1096.35108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.