×

Generalized derivations of multiplicative \(n\)-ary \(\operatorname{Hom}\text{-}\Omega\) color algebras. (English) Zbl 1464.17007

Summary: We generalize the results of Leger and Luks, Zhang R. and Zhang Y.; Chen, Ma, Ni, Niu, Zhou and Fan; Kaygorodov and Popov about generalized derivations of color \(n\)-ary algebras to the case of \(n\)-ary \(\operatorname{Hom}\text{-}\Omega\) color algebras. Particularly, we prove some properties of generalized derivations of multiplicative \(n\)-ary \(\operatorname{Hom}\text{-}\Omega\) color algebras. Moreover, we prove that the quasiderivation algebra of any multiplicative \(n\)-ary \(\operatorname{Hom}\text{-}\Omega\) color algebra can be embedded into the derivation algebra of a larger multiplicative \(n\)-ary \(\operatorname{Hom}\text{-}\Omega\) color algebra.

MSC:

17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
17A42 Other \(n\)-ary compositions \((n \ge 3)\)
17B61 Hom-Lie and related algebras
17D30 (non-Lie) Hom algebras and topics

References:

[1] Beites, P.D., Nicolás, A.P.: An associative triple system of the second kind. Commun. Algebra 44(11), 5027-5043 (2016) · Zbl 1353.17005 · doi:10.1080/00927872.2016.1149185
[2] Beites, P.D., Pozhidaev, A.: On simple Filippov superalgebras of type A(n, n). Asian-Eur. J. Math. 1(4), 469-487 (2008) · Zbl 1208.17008 · doi:10.1142/S1793557108000394
[3] Cantarini, N., Kac, V.: Classification of simple linearly compact \[n\] n-lie superalgebras. Commun. Math. Phys. 298(3), 833-853 (2010) · Zbl 1232.17008 · doi:10.1007/s00220-010-1049-0
[4] Chen, L., Ma, Y., Ni, L.: Generalized derivations of lie color algebras. Result Math. 63(3-4), 923-936 (2013) · Zbl 1272.17022 · doi:10.1007/s00025-012-0241-2
[5] de la Concepción, D., Makhlouf, A.: Variety of Hom-Sabinin algebras and related algebra subclasses. arXiv:1512.04173 · Zbl 1511.17071
[6] Dzhumadil’daev, A. S.: Cohomologies of colour Leibniz algebras: pre-simplicial approach. In: Lie Theory and Its Applications in Physics, III (Clausthal, 1999). World Sci. Publ. River Edge NJ 124-136 (2000) · Zbl 1006.17004
[7] Kaygorodov, \[I.: \delta\] δ-Derivations of simple finite-dimensional Jordan superalgebras. Algebra Log. 46(5), 318-329 (2007) · Zbl 1164.17020 · doi:10.1007/s10469-007-0032-0
[8] Kaygorodov, \[I.: \delta\] δ-Derivations of classical Lie superalgebras. Sib. Math. J. 50(3), 434-449 (2009) · Zbl 1221.17019 · doi:10.1007/s11202-009-0049-9
[9] Kaygorodov, \[I.: \delta\] δ-Superderivations of simple finite-dimensional Jordan and Lie superalgebras. Algebra Log. 49(2), 130-144 (2010) · Zbl 1232.17028 · doi:10.1007/s10469-010-9085-6
[10] Kaygorodov, \[I.: \delta\] δ-Superderivations of semisimple finite-dimensional Jordan superalgebras. Math. Note 91(2), 187-197 (2012) · Zbl 1376.17043 · doi:10.1134/S0001434612010208
[11] Kaygorodov, \[I.: \delta\] δ-Derivations of \[n\] n-ary algebras. Izv. Math. 76(5), 1150-1162 (2012) · Zbl 1279.17002 · doi:10.1070/IM2012v076n06ABEH002618
[12] Kaygorodov, \[I.: (n+1)\](n+1)-Ary derivations of simple \[n\] n-ary algebras. Algebra Log. 50(5), 470-471 (2011) · Zbl 1261.17002 · doi:10.1007/s10469-011-9157-2
[13] Kaygorodov, \[I.: (n+1)\](n+1)-Ary derivations of simple Malcev algebras. St. Peterburg Math. J. 23(4), 575-585 (2014) · Zbl 1380.17025 · doi:10.1090/S1061-0022-2014-01307-6
[14] Kaygorodov, \[I.: (n+1)\](n+1)-Ary derivations of semisimple Filippov algebras. Math. Note 96(2), 208-216 (2014) · Zbl 1315.17002 · doi:10.1134/S0001434614070220
[15] Kaygorodov, I., Okhapkina, E.: \[ \delta\] δ-Derivations of semisimple finite-dimensional structurable algebras. J. Algebra Appl. 13(4), 1350130 (2014) · Zbl 1316.17001 · doi:10.1142/S0219498813501302
[16] Kaygorodov, I., Popov, Yu.: A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra 456, 323-347 (2016) · Zbl 1335.17002 · doi:10.1016/j.jalgebra.2016.02.016
[17] Kaygorodov, I., Popov, Yu.: Generalized derivations of (color) \[n\] n-ary algebras. Linear Multilinear Algebra 64(6), 1086-1106 (2016) · Zbl 1370.17006 · doi:10.1080/03081087.2015.1072492
[18] Kaygorodov, I., Popov, Yu.: Commentary to: generalized derivations of Lie triple systems. Open Math. 14, 543-544 (2016) · Zbl 1405.17005 · doi:10.1515/math-2016-0049
[19] Komatsu, H., Nakajima, A.: Generalized derivations of associative algebras. Quaest. Math. 26(2), 213-235 (2003) · Zbl 1048.16019 · doi:10.2989/16073600309486055
[20] Leger, G., Luks, E.: Generalized derivations of Lie algebras. J. Algebra 228(1), 165-203 (2000) · Zbl 0961.17010 · doi:10.1006/jabr.1999.8250
[21] Zhang, R., Zhang, Y.: Generalized derivations of Lie superalgebras. Commun. Algebra 38(10), 3737-3751 (2010) · Zbl 1211.17006 · doi:10.1080/00927870903236228
[22] Zhang, T.: Cohomology and deformations of 3-Lie colour algebras. Linear Multilinear Algebra 63(4), 651-671 (2015) · Zbl 1387.17007 · doi:10.1080/03081087.2014.891589
[23] Zhelyabin, V., Kaygorodov, I.: On \[\delta\] δ-superderivations of simple superalgebras of Jordan brackets. St. Petersburg Math. J. 23(4), 665-677 (2012) · Zbl 1323.17021 · doi:10.1090/S1061-0022-2012-01213-6
[24] Zhou, J., Chen, L., Ma, Y.: Generalized derivations of Lie triple systems. Open Math. 14, 260-271 (2016) · Zbl 1364.17003 · doi:10.1515/math-2016-0024
[25] Zhou, J., Chen, L., Ma, Y.: Generalized derivations of Hom-Lie triple systems. Bull. Malays. Math. Sci. Soc. (2016). doi:10.1007/s40840-016-0334-2 · Zbl 1429.17003 · doi:10.1007/s40840-016-0334-2
[26] Zhou, J., Niu, Y., Chen, L.: Generalized derivations of Hom-Lie algebras (Chinese). Acta Math. Sinica (Chin. Ser.) 58(4), 551-558 (2015) · Zbl 1349.17024
[27] Zhou, J., Fan, G.: Generalized derivations of n-Hom Lie superalgebras. Math. Aeterna 6(4), 533-550 (2016)
[28] Zhou, J., Fan, G.: Generalized derivations of Hom-Lie color algebra (Chinese). Pure Math. 6(3), 182-189 (2016) · doi:10.12677/PM.2016.63028
[29] Zusmanovich, P.: On \[\delta\] δ-derivations of Lie algebras and superalgebras. J. Algebra 324(12), 3470-3486 (2010) · Zbl 1218.17011 · doi:10.1016/j.jalgebra.2010.09.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.