×

Nearly subadditive sequences. (English) Zbl 1463.40005

The authors study extensions of M. Fekete’s Lemma [Math. Z. 17, 228–249 (1923; JFM 49.0047.01)]:
Fekete’s Lemma. Given a sequence \(0\leq f(1)\leq f(2)\leq f(3)\leq \ldots\) such that \[\sum_{n=1}^{\infty}\,\frac{f(n)}{n^2}=\infty,\] there exists a sequence \(\{b(n)\}_{n\in\mathbb{N}}\) with \[b(n+m)\leq b(n)+b(m)+f(n+m),\] such that the sequence of slopes \(\{b(n)/n\}_{n\in\mathbb{N}}\) takes every rational number as value.
The starting point of the paper is a theorem by N. G. de Bruijn and P. Erdős [Nederl. Akad. Wet., Proc., Ser. A 55 (Indag. Math. 14), 152–163 (1952; Zbl 0047.06303)] and the main results of the paper are the following.
Theorem 2. Suppose \(\mu >1\) and \(N\geq 1\) are given. If \(\{a(1),a(2),\ldots\}\) is \((\mu,N)\)-subadditive, i.e. \[a(n+m)\leq a(n)+a(m),\quad n\leq m\leq \mu n;\ n,m\geq N,\] then \(\lim_{n\rightarrow\infty}a(n)/n\) exists and equals \(\inf_{k\geq N} a(k)/k\). (It may be \(-\infty\).)
Theorem 3. Suppose \(\mu>1\) and \(N\geq 1\) are given and \(f\) is a non-negative monotone increasing real function satisfying \[\sum_{n=1}^{\infty}\,\frac{f(n)}{n^2}\text{ is finite}.\] If the sequence \(\{a(1),a(2),\ldots\}\) is \((\mu,N,f)\)-subadditive, i.e., \[a(n+m)\leq a(n)+a(m)+f(n+m),\quad m\leq n\leq \mu m; \ m,n\geq N,\] then \(\lim_{n\rightarrow\infty} a(n)/n\) exists. (It may be \(-\infty\).)
Theorem 4. Let \(f(n)\) be a non-negative, non-decreasing sequence and suppose \[\sum_{1\leq n <\infty}\,\frac{f(n)}{n^2}=\infty.\] Then there exists a nearly \(f\)-subadditive sequence \(b(1),b(2),b(3),\ldots\) of rational numbers, i.e., for all integers \(m,n\geq 1\), \[b(n+m)\leq b(n)+b(m)+f(n+m),\] such that the set of slopes takes all rationals exactly once.

MSC:

40A05 Convergence and divergence of series and sequences
11K65 Arithmetic functions in probabilistic number theory
05A16 Asymptotic enumeration

References:

[1] Bayati, M.; Gamarnik, D.; Tetali, P., Combinatorial approach to the interpolation method and scaling limits in sparse random graphs, Ann. Probab., 41, 4080-4115 (2013) · Zbl 1280.05115 · doi:10.1214/12-AOP816
[2] B. Bollobás and O. Riordan, Percolation, Cambridge University Press (New York, 2006) · Zbl 1118.60001
[3] N. G. de Bruijn and P. Erdős, Some linear and some quadratic recursion formulas. I, Indag. Math., 13 (1951), 374-382 · Zbl 0044.06003
[4] N. G. de Bruijn and P. Erdős, Some linear and some quadratic recursion formulas. II, Indag. Math., 14 (1952), 152-163 · Zbl 0047.06303
[5] Capobianco, S., Multidimensional cellular automata and generalization of Fekete’s lemma, Discrete Math. Theor. Comput. Sci., 10, 95-104 (2008) · Zbl 1204.37014
[6] Ceccherini-Silberstein, T.; Coornaert, M.; Krieger, F., An analogue of Fekete’s lemma for subadditive functions on cancellative amenable semigroups, J. Anal. Math., 124, 59-81 (2014) · Zbl 1308.43002 · doi:10.1007/s11854-014-0027-4
[7] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228-249. See also, e.g., in [11] · JFM 49.0047.01
[8] P. Frenkel, The 2016 Miklós Schweitzer Memorial Competition in Mathematics, October 24-November 2, 2016, Organized by the Bolyai Society, Hungary, Problem 4 was proposed by Z. Füredi, http://www.bolyai.hu/Schweitzer/angol_2016.pdf
[9] Hwang, Hsien-Kuei; Tsai, Tsung-Hsi, An asymptotic theory for recurrence relations based on minimization and maximization, Theoret. Comput. Sci., 290, 1475-1501 (2003) · Zbl 1044.68168 · doi:10.1016/S0304-3975(02)00066-X
[10] Kulczycki, M.; Kwietniak, D.; Li, J., Entropy of subordinate shift spaces, Amer. Math. Monthly, 125, 141-148 (2018) · Zbl 1394.37024 · doi:10.1080/00029890.2018.1401875
[11] G. Pólya and G. Szegő, Problems and Theorems in Analysis, vol. 1, Springer-Verlag (New York, 1976); (originally: Aufgaben und Lehrsätze ..., Springer (Berlin, 1925), vol. 1, p. 17.) · JFM 51.0173.01
[12] Steele, JM, Probability Theory and Combinatorial Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics (1997), SIAM (Philadelphia: PA, SIAM (Philadelphia · Zbl 0916.90233
[13] Turova, TS, The largest component in subcritical inhomogeneous random graphs, Combin. Probab. Comput., 20, 131-154 (2011) · Zbl 1225.05221 · doi:10.1017/S0963548310000180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.