×

The Bohr operator on analytic functions and sections. (English) Zbl 1461.30006

Summary: The Bohr operator \(\mathcal{M}_r\) for a given analytic function \(f(z) = \sum_{n = 0}^\infty a_n z^n\) and a fixed \(z\) in the unit disk, \(| z | = r\), is given by \[\mathcal{M}_r(f) = \sum_{n = 0}^\infty | a_n | | z^n | = \sum_{n = 0}^\infty | a_n | r^n.\] Applying earlier results of Bohr and Rogosinski, the Bohr operator is used to readily establish the following inequalities: if \(f(z) = \sum_{n = 0}^\infty a_n z^n\) is subordinate (or quasi-subordinate) to \(h(z) = \sum_{n = 0}^\infty b_n z^n\) in the unit disk, then \[\mathcal{M}_r(f) \leq \mathcal{M}_r(h), \quad 0 \leq r \leq 1 / 3.\] Further, each \(k\)-th section \(s_k(f) = a_0 + a_1 z + \cdots + a_k z^k\) satisfies \[| s_k ( f ) | \leq \mathcal{M}_r ( s_k ( h ) ), \quad 0 \leq r \leq 1 / 2,\] and \[\mathcal{M}_r ( s_k ( f ) ) \leq \mathcal{M}_r( s_k(h)), \quad 0 \leq r \leq 1 / 3.\] Both constants 1/2 and 1/3 cannot be improved. From these inequalities, a refinement of Bohr’s theorem is obtained in the subdisk \(| z | \leq 1 / 3\). Also established are growth estimates in the subdisk of radius 1/2 for the \(k\)-th section \(s_k(f)\) of analytic functions \(f\) subordinate to a concave wedge-mapping. A von Neumann-type inequality is established for the class consisting of Schwarz functions in the unit disk.

MSC:

30B10 Power series (including lacunary series) in one complex variable
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
30A10 Inequalities in the complex plane
Full Text: DOI

References:

[1] Abu-Muhanna, Y., Bohr phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ., 55, 11, 1071-1078 (2010) · Zbl 1215.46018
[2] Abu-Muhanna, Y.; Ali, R. M., Bohr phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl., 379, 2, 512-517 (2011) · Zbl 1214.30004
[3] Abu-Muhanna, Y.; Ali, R. M.; Ng, Z. C.; Hasni, S. F.M., Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl., 420, 1, 124-136 (2014) · Zbl 1293.30004
[4] Abu-Muhanna, Y.; Ali, R. M.; Ponnusamy, S., On the Bohr inequality, (Govil, N. K.; Mohapatra, M.; Qazi, M. A.; Schmeisser, G., Progress in Approximation Theory and Applicable Complex Analysis (2017), Springer), 265-295
[5] Abu Muhanna, Y.; Ali, R. M.; Ng, Z. C., Bohr radius for the punctured disk, Math. Nachr., 290, 16, 2434-2443 (2017) · Zbl 1379.30001
[6] Agrawal, S.; Mohapatra, M. R., Bohr radius for certain classes of analytic functions, J. Class. Anal., 12, 2, 109-118 (2018) · Zbl 1424.28005
[7] Aizenberg, L., Multidimensional analogues of Bohr’s theorem on power series, Proc. Am. Math. Soc., 128, 4, 1147-1155 (2000) · Zbl 0948.32001
[8] Aizenberg, L.; Elin, M.; Shoikhet, D., On the Rogosinski radius for holomorphic mappings and some of its applications, Stud. Math., 168, 2, 147-158 (2005) · Zbl 1068.32001
[9] Aizenberg, L., Generalization of results about the Bohr radius for power series, Stud. Math., 180, 2, 161-168 (2007) · Zbl 1118.32001
[10] Aizenberg, L., Remarks on the Bohr and Rogosinski phenomena for power series, Anal. Math. Phys., 2, 1, 69-78 (2012) · Zbl 1257.32001
[11] Ali, R. M.; Abdulhadi, Z.; Ng, Z. C., The Bohr radius for starlike logharmonic mappings, Complex Var. Elliptic Equ., 61, 1, 1-14 (2016) · Zbl 1332.30022
[12] Ali, R. M.; Ng, Z. C., The Bohr inequality in the hyperbolic plane, Complex Var. Elliptic Equ., 63, 11, 1539-1557 (2018) · Zbl 1395.30010
[13] Ali, R. M.; Jain, N. K.; Ravichandran, V., Bohr radius for classes of analytic functions, Results Math., 74, 4, Article 179 pp. (2019), 13 pp. · Zbl 1435.30004
[14] Ali, R. M.; Barnard, R. W.; Solynin, A. Y., A note on the Bohr’s phenomenon for power series, J. Math. Anal. Appl., 449, 1, 154-167 (2017) · Zbl 1360.30002
[15] Alkhaleefah, S. A.; Kayumov, I. R.; Ponnusamy, S., On the Bohr inequality with a fixed zero coefficient, Proc. Am. Math. Soc., 147, 12, 5263-5274 (2019) · Zbl 1428.30001
[16] Barnard, R. W.; Jayatilake, U. C.; Solynin, A. Y., Brannan’s conjecture and trigonometric sums, Proc. Am. Math. Soc., 143, 5, 2117-2128 (2015) · Zbl 1322.30002
[17] Brannan, D. A., On coefficient problems for certain power series, (Clunie, J.; Hayman, W. K., Proceedings of the Symposium on Complex Analysis. Proceedings of the Symposium on Complex Analysis, Canterbury, 1973 (1974), Cambridge Univ. Press: Cambridge Univ. Press London), 17-27 · Zbl 0302.30022
[18] Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt{ ( \log n ) / n} \), Adv. Math., 264, 726-746 (2014) · Zbl 1331.46037
[19] Beneteau, C.; Dahlner, A.; Khavinson, D., Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory, 4, 1, 1-19 (2004) · Zbl 1067.30094
[20] Boas, H. P.; Khavinson, D., Bohr’s power series theorem in several variables, Proc. Am. Math. Soc., 125, 10, 2975-2979 (1997) · Zbl 0888.32001
[21] Bohr, H., A theorem concerning power series, Proc. Lond. Math. Soc., 13, 2, 1-5 (1914) · JFM 44.0289.01
[22] Bombieri, E., Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital., 17, 3, 276-282 (1962) · Zbl 0109.04801
[23] Bhowmik, B.; Das, N., Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462, 2, 1087-1098 (2018) · Zbl 1391.30003
[24] Bhowmik, B.; Das, N., Bohr phenomenon for operator valued functions · Zbl 1477.47012
[25] de Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154, 1, 137-152 (1985) · Zbl 0573.30014
[26] Defant, A.; Frerick, L.; Ortega-Cerdà, J.; Ounaïes, M.; Seip, K., The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. Math. (2), 174, 1, 485-497 (2011) · Zbl 1235.32001
[27] Dineen, S.; Timoney, R. M., Absolute bases, tensor products and a theorem of Bohr, Stud. Math., 94, 3, 227-234 (1989) · Zbl 0713.46005
[28] Dixon, P. G., Banach algebra satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., 27, 4, 359-362 (1995) · Zbl 0835.47033
[29] Duren, P., Univalent Functions (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0514.30001
[30] Evdoridis, S.; Ponnusamy, S.; Rasila, A., Improved Bohr’s inequality for locally univalent harmonic mappings, Indag. Math. (N.S.), 30, 1, 201-213 (2019) · Zbl 1404.31002
[31] Kayumov, I. R.; Ponnusamy, S., Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl., 465, 2, 857-871 (2018) · Zbl 1394.31001
[32] Kayumov, I. R.; Ponnusamy, S., Improved version of Bohr’s inequality, C. R. Math. Acad. Sci. Paris, 356, 3, 272-277 (2018) · Zbl 1432.30002
[33] Liu, M. S.; Shang, Y. M.; Xu, J. F., Bohr-type inequalities of analytic functions, J. Inequal. Appl., 2018, 345 (2018), 13 pages · Zbl 1498.30001
[34] Liu, Z. H.; Ponuusamy, S., Bohr radius for subordination and K-quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc., 42, 5, 2151-2168 (2019) · Zbl 1425.31004
[35] Paulsen, V. I.; Singh, D., Bohr’s inequality for uniform algebras, Proc. Am. Math. Soc., 132, 12, 3577-3579 (2004) · Zbl 1062.46041
[36] Paulsen, V. I.; Singh, D., Extensions of Bohr’s inequality, Bull. Lond. Math. Soc., 38, 6, 991-999 (2006) · Zbl 1119.46043
[37] Paulsen, V. I.; Singh, D., A simple proof of Bohr’s inequality
[38] Pommerenke, C. H.R., Univalent Functions (1975), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen · Zbl 0298.30014
[39] Ponnusamy, S.; Wirths, K.-J., Bohr type inequalities for functions with a multiple zero at the origin, Comput. Methods Funct. Theory, 20, 3-4, 559-570 (2020) · Zbl 1461.30004
[40] von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4, 258-281 (1951) · Zbl 0042.12301
[41] Rogosinski, W., Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z., 17, 1, 260-276 (1923) · JFM 49.0231.03
[42] Ruscheweyh, S.; Salinas, L., On Brannan’s coefficient conjecture and applications, Glasg. Math. J., 49, 45-52 (2007) · Zbl 1117.30014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.