×

Variant of the relationship between the mechanical and adhesive properties of solid materials. (English. Russian original) Zbl 1460.74003

Mech. Solids 55, No. 8, 1392-1405 (2020); translation from Prikl. Mat. Mekh. 84, No. 3, 387-404 (2020).
Summary: In this study, a variant of revealing the relationship between the mechanical and adhesive properties of linearly elastic, homogeneous isotropic second-order materials is presented. This relationship is established with the help of a nonlocal model of an elastic medium based on the idea of the pair and triple potential interactions of infinitely small particles of solid bodies. As an example of the usage of the revealed relationship, mechanical properties of solids influence on their ability to enter or not enter into the state of adhesion is shown.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74M15 Contact in solid mechanics
74B99 Elastic materials
Full Text: DOI

References:

[1] Goryacheva, I. G.; Makhovskaya, Yu. Yu., Approach to solving the problems on interaction between elastic bodies in the presence of adhesion, Dokl. Phys., 398, 323-327 (2004)
[2] Soldatenkov, I. A., The contact problem with the bulk application of intermolecular interaction forces: the influence function for an elastic ‘layer-half-space��� system, J. Appl. Math. Mech., 82, 351-358 (2018) · Zbl 1432.74175
[3] Belov, P. A.; Lur’e, S. A., Theory of ideal adhesion interaction, Mekh. Kompoz. Mater. Konstr., 13, 519-536 (2007)
[4] Turusov, R. A., Adhesive Mechanics (2015), Moscow: Moscow State University of Civil Engineering, Moscow
[5] Deryagin, B. V.; Krotova, N. A.; Smilga, V. P., Adhesion of Solids (1973), Moscow: Nauka, Moscow
[6] Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P., Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci., 67, 378-326 (1975) · doi:10.1016/0021-9797(78)90021-8
[7] Johnson, K. L., Adhesion and friction between a smooth elastic spherical asperity and plane surface, Proc. R. Soc. London A, 453, 163-179 (1997) · doi:10.1098/rspa.1997.0010
[8] Maugis, D., Contact, Adhesion and Rupture of Elastic Solids (2000), Berlin: Springer, Berlin · Zbl 0937.74002 · doi:10.1007/978-3-662-04125-3
[9] McMeeking, R. M., A Maxwell stress for material interactions, J. Colloid Interface Sci., 199, 187-196 (1998) · doi:10.1006/jcis.1997.5342
[10] Hamaker, H. C., The London – van der Waals attraction between spherical particles, Physica, 4, 1058-1072 (1937) · doi:10.1016/S0031-8914(37)80203-7
[11] Cappella, B.; Dietler, G., Force-distance curves by atomic force microscopy, Surf. Sci. Rep., 34, 1-104 (1999) · doi:10.1016/S0167-5729(99)00003-5
[12] Lifshits, E. M., The theory of molecular attractive forces between solids, Sov. Phys. JETP, 2, 73-83 (1956)
[13] Partenskii, M. B., Self-consistent electron theory of a metallic surface, Sov. Phys. Usp., 22, 330-351 (1979) · doi:10.1070/PU1979v022n05ABEH005498
[14] Yu, N.; Polycarpou, A. A., Adhesive contact based on the Lenard-Jones potential: a correction to the value of the equilibrium distance as used in the potential, J. Colloid Interface Sci., 278, 428-435 (2004) · doi:10.1016/j.jcis.2004.06.029
[15] Physical Encyclopedic Dictionary (Sovetskaya entsiklopediya, Moscow, 1960), Vol. 1 [in Russian]. · Zbl 0095.38216
[16] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices (1954), Oxford: Clarendon Press, Oxford · Zbl 0057.44601
[17] Leibfrid, G., Microscopic Theory of the Mechanical and Thermal Properties of Crystals (1963), Moscow: Fizmatgiz, Moscow
[18] Kaplan, I. G., Introduction to the Theory of Molecular Interactions (1982), Moscow: Nauka, Moscow
[19] Krivtsov, A. M.; Krivtsova, N. V., Method of particles and its use in the mechanics of a deformable solid body, Dal’nevost. Mat. Zh., 3, 254-276 (2002)
[20] Krivtsov, A. M., Deformation and Fracture of Solids with Microstructure (2007), Moscow: Fizmatlit, Moscow
[21] Ruelle, D., Statistical Mechanics: Rigorous Results (1969), New York: Benjamin, New York · Zbl 0177.57301
[22] Uhlenbeck, G. E., Fundamental Problems in Statistical Mechanics (1968)
[23] Barash, Yu. S., Van der Waals Forces (1988), Moscow: Nauka, Moscow
[24] Tersoff, J., New empirical spproach for the dtructure and energy of covalent system, Phys. Rev., 37, 6991-6999 (1988) · doi:10.1103/PhysRevB.37.6991
[25] Erkoc, S., Empirical many-body potential energy functions used computer simulations of condensed matter properties, Phys. Rep., 278, 79-105 (1997) · doi:10.1016/S0370-1573(96)00031-2
[26] Poluektov, Yu. M.; Soroka, A. A., “The equation of state and the quasiparticle mass in the degenerate Fermi system with an effective interaction,” East, Europ. J. Phys., 2, 40-49 (2015)
[27] Mayer, M., Statistical Mechanics (1940), New York: Wiley, New York · JFM 66.1175.01
[28] Barash, Yu. S.; Ginzburg, V. L., Some problems in the theory of van der Waals forces, Sov. Phys. Usp., 27, 467-491 (1984) · doi:10.1070/PU1984v027n07ABEH004025
[29] Vekilov, Yu. Kh.; Vernger, V. D.; Samsonova, M. B., Electron structure of surfaces of nontransition metals, Sov. Phys. Usp., 30, 172-192 (1987) · doi:10.1070/PU1987v030n02ABEH002814
[30] S. A. Lur’e and P. A. Belov, “Variational formulation of mathematical models of media with microstructure,” Mat. Model. Sist. Prots., No. 14, 114-132 (2006).
[31] Shorkin, V. S.; Frolenkova, L. Yu.; Azarov, A. S., Study of influence of triple interaction of medium particles on surface and adhesion properties of solids, Materialovedenie, No., 2, 2-8 (2011)
[32] Shorkin, V. S., Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity, Mech. Solids, 46, 898-912 (2011) · doi:10.3103/S0025654411060094
[33] C. Kittel, Introduction to Solid State Physics (Wiley, New York; Chapman Hall, London, 1953). · Zbl 0052.45506
[34] Rushitskii, Ya. Ya., Elements of the Mixture Theory (1991), Kiev: Naukova dumka, Kiev · Zbl 0883.73002
[35] Physical Encyclopedic Dictionary, Ed. by B. A. Vvedenskii (Sov. entsiklopediya, Moscow, 1960), Vol. 1, p. 19 [in Russian]. · Zbl 0095.38216
[36] Vakilov, A. N.; Mamonova, M. V.; Prudnikov, V. V., Adhesion of metals and semiconductors analyzed by a dielectric formalism, Phys. Solid State, 39, 864-867 (1997) · doi:10.1134/1.1129992
[37] Presnetsova, V. Yu.; Romashin, S. N.; Frolenkova, L. Yu.; Shorkin, V. S.; Yakushina, S. I., A variant of describing adhesion interaction in the probe sample system of an atomic-force microscope, Nanosci. Technol., 9, 299-323 (2018)
[38] Frolenkova, L. Yu.; Shorkin, V. S., Surface energy and adhesion energy of elastic bodies, Mech. Solids, 52, 62-74 (2017) · doi:10.3103/S0025654417010083
[39] Goryacheva, I. G.; Makhovskaya, Yu. Yu., Adhesive interaction of elastic bodies, J. Appl. Math. Mech., 65, 273-282 (2001) · Zbl 1010.74586 · doi:10.1016/S0021-8928(01)00031-4
[40] Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P., Effect of contact deformations on adhesion particles, J. Colloid Interface Sci., 53, 314-326 (1975) · doi:10.1016/0021-9797(75)90018-1
[41] Goldshtein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., About negativity of the Poisson’s ratio for anisotropic materials, Dokl. Phys., 54, 546-548 (2009) · doi:10.1134/S1028335809120064
[42] Vakhromeev, G. S.; Erofeev, L. Ya.; Kanaikin, V. S.; Nomokonova, G. G., Petrophysics (1997), Tomsk: Tomsk State Univ., Tomsk
[43] Andreev, T. V., Properties of Elements, Part 1: Physical Properties (1976), Moscow: Metallurgiya, Moscow
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.