×

Simplified elastic wave modeling in seven-wire prestressed parallel strands. (English) Zbl 1458.74074

Summary: This paper considers elastic wave propagation in seven-wire parallel strands. Under a transverse distributed force, the stress state of seven-wire strands is derived from the Hertzian theory, which is regarded as the prestress state for the dynamic analysis. According to the wave finite element method, the elastodynamic equation with prestress is discretized corresponding to harmonic wave motion. Firstly, the results are verified by the semi-analysis finite element method. Then, dispersion properties in seven-wire parallel strands are computed and compared to those of double cylindrical rods. Besides, the results from parallel strands and helical strands indicate that wave propagation in the former is significantly different from that in the latter. For the deep understanding of wave characteristics, the displacement vectors are used to identify the propagating modes. It is found that there is only one torsional-like mode which rotates with a twist center in the whole region. Meanwhile, it is found that the variation of prestress has large influence on the torsional-like mode for low frequencies, but little on propagating modes for high frequencies. In addition, there appears the notch frequency and the effect of prestress on it is discussed in detail. The notch frequency decreases with the rising of the prestress in a certain range.

MSC:

74J10 Bulk waves in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Graff, K.F.: Wave Motion in Elastic Solids. Courier Dover, New York (1975) · Zbl 0314.73022
[2] Mott, G.: Elastic waveguide propagation in an infinite isotropic solid cylinder that is subjected to a static axial stress and strain. J. Acoust. Soc. Am. 53(4), 1129-1133 (1973) · doi:10.1121/1.1913434
[3] Meitzler, A.H.: Mode coupling occurring in the propagation of elastic pulses in wires. J. Acoust. Soc. Am. 33(4), 435-445 (1961) · doi:10.1121/1.1908685
[4] Washer, G.A., Green, R.E., Pond, R.B.: Velocity constants for ultrasonic stress measurement in prestressing tendons. J. Res. Nondestruct. Eval. 14(2), 81-94 (2002) · doi:10.1080/09349840209409706
[5] Rizzo, P., Di Scalea, F.L.: Wave propagation in multi-wire strands by wavelet-based laser ultrasound. Exp. Mech. 44(4), 407-415 (2004) · doi:10.1007/BF02428094
[6] Haag, T., Beadle, B.M., Sprenger, H., Gaul, L.: Wave-based defect detection and interwire friction modeling for overhead transmission lines. Arch. Appl. Mech. 79(6-7), 517-528 (2009) · Zbl 1264.74132 · doi:10.1007/s00419-008-0282-x
[7] Schaal, C., Bischoff, S., Gaul, L.: Energy-based models for guided ultrasonic wave propagation in multi-wire cables. Int. J. Solids Struct. 64, 22-29 (2015) · doi:10.1016/j.ijsolstr.2015.03.010
[8] Mazuch, T.: Wave dispersion modelling in anisotropic shells and rods by the finite element method. J. Sound Vib. 198(4), 429-438 (1996) · doi:10.1006/jsvi.1996.0580
[9] Hayashi, T., Song, W.-J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3), 175-183 (2003) · doi:10.1016/S0041-624X(03)00097-0
[10] Treyssède, F.: Numerical investigation of elastic modes of propagation in helical waveguides. J. Acoust. Soc. Am. 121(6), 3398-3408 (2007) · doi:10.1121/1.2730741
[11] Liu, Y.J., Han, Q., Li, C.L., Huang, H.W.: Numerical investigation of dispersion relations for helical waveguides using the scaled boundary finite element method. J. Sound Vib. 333(7), 1991-2002 (2014) · doi:10.1016/j.jsv.2013.11.041
[12] Loveday, P.W.: Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49(3), 298-300 (2009) · doi:10.1016/j.ultras.2008.10.018
[13] Søe-Knudsen, A., Sorokin, S.: On accuracy of the wave finite element predictions of wavenumbers and power flow: a benchmark problem. J. Sound Vib. 330(12), 2694-2700 (2011) · doi:10.1016/j.jsv.2011.02.022
[14] Treyssède, F., Laguerre, L.: Investigation of elastic modes propagating in multi-wire helical waveguides. J. Sound Vib 329(10), 1702-1716 (2010) · doi:10.1016/j.jsv.2009.11.021
[15] Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987) · Zbl 0599.73108
[16] Timoshenko, S.: Goodier. In: Theory of Elasticity (1970) · Zbl 0266.73008
[17] Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294(1), 205-220 (2006) · doi:10.1016/j.jsv.2005.11.014
[18] Mencik, J.-M.: New advances in the forced response computation of periodic structures using the wave finite element (wfe) method. Comput. Mech. 54(3), 789-801 (2014) · Zbl 1311.65149 · doi:10.1007/s00466-014-1033-1
[19] Bathe, K.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996) · Zbl 1326.65002
[20] Mead, D.: Wave propagation in continuous periodic structures: research contributions from southampton, 1964-1995. J. Sound Vib. 190(3), 495-524 (1996) · doi:10.1006/jsvi.1996.0076
[21] Li, C.L., Han, Q., Liu, Y.J.: Thermoelastic wave characteristics in a hollow cylinder using the modified wave finite element method. Acta Mech. 227(6), 1711-1725 (2016) · Zbl 1341.74152 · doi:10.1007/s00707-016-1578-5
[22] Waki, Y., Mace, B.R., Brennan, M.: Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J. Sound Vib. 327(1), 92-108 (2009) · doi:10.1016/j.jsv.2009.06.005
[23] Li, C.L., Han, Q., Liu, Y.J., Liu, X.C., Wu, B.: Investigation of wave propagation in double cylindrical rods considering the effect of prestress. J. Sound Vib. 353, 164-180 (2015) · doi:10.1016/j.jsv.2015.05.017
[24] Moser, F., Jacobs, L.J., Qu, J.: Modeling elastic wave propagation in waveguides with the finite element method. Ndt & E Int. 32(4), 225-234 (1999) · doi:10.1016/S0963-8695(98)00045-0
[25] Allemang, R.J.: The modal assurance criterion-twenty years of use and abuse. Sound Vib. 37(8), 14-23 (2003)
[26] Gravenkamp, H., Man, H., Song, C., Prager, J.: The computation of dispersion relations for three-dimensional elastic waveguides using the scaled boundary finite element method. J. Sound Vib. 332(15), 3756-3771 (2013) · doi:10.1016/j.jsv.2013.02.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.