×

Algebraic structures in the coupling of gravity to gauge theories. (English) Zbl 1457.83017

Summary: This article is an extension of the author’s second master thesis, [Algebraic structures in the coupling of gravity to gauge theories. Berlin: Humboldt-Universität (2017)]. It aims to introduce to the theory of perturbatively quantized General Relativity coupled to Spinor Electrodynamics, provide the results thereof and set the notation to serve as a starting point for further research in this direction. It includes the differential geometric and Hopf algebraic background, as well as the corresponding Lagrange density and some renormalization theory. Then, a particular problem in the renormalization of Quantum General Relativity coupled to Quantum Electrodynamics is addressed and solved by a generalization of Furry’s Theorem. Next, the restricted combinatorial Green’s functions for all two-loop propagators and all one-loop divergent subgraphs thereof are presented. Finally, relations between these one-loop restricted combinatorial Green’s functions necessary for multiplicative renormalization are discussed.

MSC:

83C45 Quantization of the gravitational field
81V10 Electromagnetic interaction; quantum electrodynamics
81T13 Yang-Mills and other gauge theories in quantum field theory
81R25 Spinor and twistor methods applied to problems in quantum theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

Software:

JaxoDraw; Python

References:

[1] Rovelli, C., Notes for a brief history of quantum gravityPresented at the 9th Marcel Grossmann Meeting in Roma (2000), arXiv:gr-qc/0006061v3
[2] Feynman, R. P.; Hatfield, B.; Morinigo, F. B.; Wagner, W., (Feynman Lectures on Gravitation. Feynman Lectures on Gravitation, Frontiers in Physics Series (2002), Avalon Publishing)
[3] DeWitt, B. S., Phys. Rev., 160, 1113-1148 (1967) · Zbl 0158.46504
[4] DeWitt, B. S., Phys. Rev., 162, 1195-1239 (1967) · Zbl 0161.46501
[5] DeWitt, B. S., Phys. Rev., 162, 1239-1256 (1967) · Zbl 0161.46501
[6] DeWitt, B. S., Phys. Rev., 171, 1834 (1968)
[7] D. Boulware, S. Deser, P. Van Nieuwenhuizen, Uniqueness and nonrenormalizability of quantum gravitation, in: In Proceedings, General Relativity and Gravitation, Tel Aviv 1974, New York 1975, 1-18, Conference: C74-06-23, p. 1-18.
[8] ’t Hooft, G., (Rollnik, H.; Dietz, K., Trends in Elementary Particle Theory: International Summer Institute on Theoretical Physics in Bonn 1974 (1975), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 92-113
[9] Veltman, M., (Balian, R.; Zinn-Justin, J., Quantum Theory of Gravitation. Quantum Theory of Gravitation, LesHouches, Session XXVIII, 1975 - Methodes en theories des champs/Methods in field theory (1976), ©North-Holland Publishing Company)
[10] Kreimer, D., Ann. Phys., 323, 49-60 (2008), arXiv:0705.3897v1 [hep-th] · Zbl 1132.83305
[11] Kreimer, D., (Fauser, B.; Tolksdorf, J.; Zeidlers, E., Quantum Field Theory: Competitive Models (2009), Birkhaeuser), arXiv:0805.4545v1 [hep-th]
[12] Kreimer, D., Adv. Theor. Math. Phys., 2, 303-334 (1998), arXiv:q-alg/9707029v4 · Zbl 1041.81087
[13] Connes, A.; Kreimer, D., JHEP, 9909, 024 (1999), arXiv:hep-th/9909126v3
[14] Connes, A.; Kreimer, D., Commun. Math. Phys., 210, 249-273 (2000), arXiv:hep-th/9912092v1 · Zbl 1032.81026
[15] Connes, A.; Kreimer, D., Commun. Math. Phys., 216, 215-241 (2001), arXiv:hep-th/0003188v1 · Zbl 1042.81059
[16] Kreimer, D., Ann. Phys., 321, 2757-2781 (2006), arXiv:hep-th/0509135v3 · Zbl 1107.81038
[17] Kreimer, D., Clay Math. Proc., 11, 313-322 (2010), arXiv:0902.1223v1 [hep-th]
[18] Kreimer, D.; van Suijlekom, W. D., Nucl. Phys. B, 820, 682-693 (2009), arXiv:0903.2849v1 [hep-th] · Zbl 1196.81199
[19] Ward, J., Phys. Rev., 78, 182 (1950) · Zbl 0041.33012
[20] Takahashi, Y., Nuovo Cim, 6, 371 (1957) · Zbl 0078.20202
[21] ’t Hooft, G., Nucl. Phys. B., 33, 1, 173-199 (1971)
[22] Taylor, J. C., Nucl. Phys. B., 33, 2, 436-444 (1971)
[23] Slavnov, A. A., Theor. Math. Phys., 10, 2, 99-104 (1972)
[24] Borinsky, M., Comput. Phys. Commun., 185, 3317-3330 (2014), arXiv:1402.2613v2 [hep-th] · Zbl 1360.81012
[25] A python documentation is available at: https://www.python.org/.
[26] Prinz, D., Algebraic Structures in the Coupling of Gravity to Gauge Theories (2017), Humboldt-Universität zu Berlin, Available at https://www2.mathematik.hu-berlin.de/ kreimer/publications/
[27] Binosi, D.; Theußl, L., Comput. Phys. Commun., 161, 76-86 (2004), arXiv:hep-ph/0309015v2
[28] Binosi, D.; Collins, J.; Kaufhold, C.; Theussl, L., Comput. Phys. Commun., 180, 1709-1715 (2009), arXiv:0811.4113v1 [hep-ph] · Zbl 07872412
[29] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (2017), Princeton University Press, https://books.google.de/books?id=zAAuDwAAQBAJ · Zbl 1375.83002
[30] Prinz, D., Gravity-Matter Feynman Rules for any Valence (2020), arXiv:2004.09543v1 [hep-th]
[31] Geroch, R. P., J. Math. Phys., 9, 1739-1744 (1968) · Zbl 0165.29402
[32] Geroch, R. P., J. Math. Phys., 11, 343-348 (1970) · Zbl 0199.28303
[33] Choi, S. Y.; Shim, J. S.; Song, H. S., Phys. Rev., D51, 2751-2769 (1995), arXiv:hep-th/9411092v1
[34] Milnor, J., (DeWitt, B.; Stora, R., Relativity, Groups, and Topology II, Les Houches, 1983 (1984), Elsevier: Elsevier Amsterdam)
[35] Grabowski, J., Fundamenta Math., 131, 103-121 (1988) · Zbl 0666.58011
[36] Kriegl, A.; Michor, P. W., J. Lie Theory, 7, 1, 61-99 (1997), arXiv:math/9801007v1 [math.DG] · Zbl 0893.22012
[37] Schmeding, A., Diss. Math., 507 (2015), arXiv:1301.5551v4 [math.GR]
[38] Hamber, H. W., Quantum Gravitation (2009), Springer-Verlag Berlin Heidelberg · Zbl 1171.81001
[39] Faddeev, L. D.; Popov, V. N., Phys. Lett., 25B, 29-30 (1967)
[40] Becchi, C.; Rouet, A.; Stora, R., Phys. Lett., B52, 344 (1974)
[41] Becchi, C.; Rouet, A.; Stora, R., Commun. Math. Phys., 42, 127 (1975)
[42] Becchi, C.; Rouet, A.; Stora, R., Ann. Phys., 98, 2, 287-321 (1976)
[43] Tyutin, I. V., Gauge Invariance in Field Theory and Statistical Physics in Operator FormalismLebedev Physics Institute preprint 39 (1975)
[44] Kugo, T.; Ojima, I., Progr. Theor. Phys., 60, 6, 1869-1889 (1978) · Zbl 1098.81591
[45] Kugo, T.; Ojima, I., Suppl. Progr. Theor. Phys., 66, 14 (1979)
[46] Batalin, I. A.; Vilkovisky, G. A., Phys. Lett. B., 102, 1, 27-31 (1981)
[47] Batalin, I. A.; Vilkovisky, G. A., Phys. Rev. D, 28, 10, 2567-2582 (1983)
[48] Getzler, E., Commun. Math. Phys., 159, 2, 265-285 (1994) · Zbl 0807.17026
[49] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories (2000), arXiv:hep-th/0002245v3 · Zbl 1097.81571
[50] Mnev, P., Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory (2017), arXiv:1707.08096v1 [math-ph]
[51] Wernli, K., Lecture Notes on Chern-Simons Perturbation Theory (2019), arXiv:1911.09744v1 [math-ph]
[52] Upadhyay, S., Phys. Lett. B, 723, 470-474 (2013), arXiv:1305.4709v3 [hep-th] · Zbl 1311.81237
[53] Carroll, S. M., Lecture Notes on General Relativity (1997), arXiv:gr-qc/9712019v1
[54] Waterhouse, W. C., Introduction to Affine Group Schemes (1979), Springer-Verlag New York · Zbl 0442.14017
[55] Milne, J. S., Basic Theory of Affine Group Schemes (2012), Available at https://www.jmilne.org/math/
[56] Manchon, D., C. R. Rencontres Math. Glanon 2001 (2003), arXiv:math/0408405v2 [math.QA]
[57] Hatcher, A., (Algebraic Topology. Algebraic Topology, Algebraic Topology (2002), Cambridge University Press), Available at https://www.math.cornell.edu/ hatcher/AT/ATpage.html · Zbl 1044.55001
[58] Weinberg, S., Phys. Rev., 118, 838 (1960) · Zbl 0098.20403
[59] Yeats, K., Growth Estimates for Dyson-Schwinger Equations (2008), Boston University, Graduate School of Arts and Sciences, arXiv:0810.2249v1 [math-ph]
[60] Prinz, D., Gauge Symmetries and Renormalization (2019), arXiv:2001.00104v1 [math-ph]
[61] Panzer, E., Hopf algebraic Renormalization of Kreimer’s toy model (2012), arXiv:1202.3552v1 [math.QA]
[62] van Suijlekom, W. D., (Ceyhan, O.; Manin, Y.-I.; Marcolli, M., Arithmetic and Geometry Around Quantization. Arithmetic and Geometry Around Quantization, Progress in Mathematics, vol. 279 (2010), Birkhauser Verlag: Birkhauser Verlag Basel), arXiv:0707.0555v1 [hep-th] · Zbl 1190.00026
[63] Aldins, J.; Brodsky, S. J.; Dufner, A. J.; Kinoshita, T., Phys. Rev. Lett., 23, 441 (1969)
[64] Borinsky, M., Graphs in Perturbation Theory: Algebraic Structure and Asymptotics (2018), Humboldt-Universität zu Berlin, arXiv:1807.02046v1 [hep-th] and Springer Theses series · Zbl 1444.81002
[65] van Suijlekom, W. D., Lett. Math. Phys., 77, 265-281 (2006), arXiv:hep-th/0602126v2 · Zbl 1160.81432
[66] van Suijlekom, W. D., Commun. Math. Phys., 276, 773-798 (2007), arXiv:hep-th/0610137v1 · Zbl 1194.81165
[67] Kreimer, D.; Yeats, K., Electron. J. Combin., 20, 1 (2012), arXiv:1207.5460v1 [math.CO]
[68] Kreimer, D.; Sars, M.; van Suijlekom, W. D., Ann. Phys., 336, 180-222 (2013), arXiv:1208.6477v4 [hep-th] · Zbl 1327.81282
[69] Sars, M., Parametric Representation of Feynman Amplitudes in Gauge Theories (2015), Humboldt-Universität zu Berlin, Available at https://www2.mathematik.hu-berlin.de/ kreimer/publications/
[70] Prinz, D., Math. Phys. Anal. Geom., 19, 3, 18 (2016), arXiv:1603.03321v3 [math-ph]
[71] Kreimer, D., PoS, LL2018, 068 (2018), arXiv:1807.02385v1 [hep-th]
[72] Berghoff, M.; Knispel, A., Complexes of marked graphs in gauge theory (2019), arXiv:1908.06640v1 [math-ph] · Zbl 1441.81120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.