×

A note on Titchmarsh divisor problem under the generalized Riemann hypothesis. (English) Zbl 1457.11134

Summary: Let \(\Lambda(n)\) be the von Mangoldt function and \(\tau(n)\) the divisor function. We focus on the summation \[T(x)=\sum_{1<n\leq x} \Lambda(n)\tau(n-1).\] Under the Riemann hypothesis related to Dirichlet \(L\)-functions, it is proved that \[T(x)=x P_1 (\log x)+O(x^{1-\theta})\] holds for \(\theta<\frac{1}{6} \times 10^{-4}\). Here \(P_1(t)\) is a polynomial of degree \(1\).

MSC:

11N37 Asymptotic results on arithmetic functions
11F30 Fourier coefficients of automorphic forms
11L20 Sums over primes
11M06 \(\zeta (s)\) and \(L(s, \chi)\)

References:

[1] J. C. Andrade, L. Bary-Soroker, and Z. Rudnick, “Shifted convolution and the Titchmarsh divisor problem over \(\mathbb F_q[t]\)”, Philos. Trans. Roy. Soc. A 373:2040 (2015), art.,id.,20140308. · Zbl 1393.11061 · doi:10.1098/rsta.2014.0308
[2] E. Bombieri, J. B. Friedlander, and H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math. 156:3-4 (1986), 203-251. · Zbl 0588.10042 · doi:10.1007/BF02399204
[3] E. Bombieri, J. B. Friedlander, and H. Iwaniec, “Some corrections to an old paper”, 2019.
[4] J.-M. Deshouillers and H. Iwaniec, “Kloosterman sums and Fourier coefficients of cusp forms”, Invent. Math. 70:2 (1982/83), 219-288. · Zbl 0502.10021 · doi:10.1007/BF01390728
[5] S. Drappeau, “Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method”, Proc. Lond. Math. Soc. \((3) 114\):4 (2017), 684-732. · Zbl 1392.11059 · doi:10.1112/plms.12022
[6] E. Fouvry, “Sur le problème des diviseurs de Titchmarsh”, J. Reine Angew. Math. 357 (1985), 51-76. · Zbl 0547.10039
[7] E. Fouvry and G. Tenenbaum, “Sur la corrélation des fonctions de Piltz”, Rev. Mat. Iberoamericana 1:3 (1985), 43-54. · Zbl 0599.10035 · doi:10.4171/RMI/14
[8] H. Halberstam, “Footnote to the Titchmarsh-Linnik divisor problem”, Proc. Amer. Math. Soc. 18 (1967), 187-188. · Zbl 0152.03202 · doi:10.1090/S0002-9939-1967-0204379-6
[9] A. J. Harper, “On finding many solutions to S-unit equations by solving linear equations on average”, preprint, 2011.
[10] D. R. Heath-Brown, “Prime numbers in short intervals and a generalized Vaughan identity”, Canadian J. Math. 34:6 (1982), 1365-1377. · Zbl 0478.10024 · doi:10.4153/CJM-1982-095-9
[11] J. V. Linnik, The dispersion method in binary additive problems, American Mathematical Society, Providence, R. I., 1963. · Zbl 0112.27402
[12] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory I: Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007. · Zbl 1142.11001
[13] G. Rodriquez, “Sul problema dei divisori di Titchmarsh”, Boll. Un. Mat. Ital. \((3) 20 (1965), 358-366\). · Zbl 0148.27207
[14] E. C. Titchmarsh, “A divisor problem”, Ren. Circ. Matem. Palermo 54:1 (1930), 414-429. · JFM 56.0891.01 · doi:10.1007/BF03021203
[15] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.