×

On the arithmetic of modified idèle class groups. (English. Russian original) Zbl 1456.11211

Izv. Math. 84, No. 3, 545-591 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 3, 119-167 (2020).
Summary: Let \(k\) be a number field and \(S, T\) sets of places of \(k\). For each prime \(p\), we define an invariant \(\mathscr{G}=\mathscr{G}_p(k_\infty/k,S,T)\) related to the Galois group of the maximal abelian extension of \(k\) which is unramified outside \(S\) and splits completely in \(T\). In the main theorem we interpret \(\mathscr{G}\) in terms of another arithmetic object \(\mathscr{U}\) that involves various unit groups and uses genus theory applied to certain modules, which are technically modified from idèle groups. We show that this interpretation is functorial with respect to \(S\) and \(T\) and thereby provides interesting connections between \(\mathscr{G}\) and \(\mathscr{U}\) as \(S\) and \(T\) vary. The settings and methods are new, and different from the classical genus theoretic methods for idèle groups. The advantage of the new methods at the finite level not only generalizes but also strengthens certain known results involving the maximal \(p\)-abelian profinite Galois group of \(k\) that is \(S\)-ramified and \(T\)-split in terms of the arithmetic of certain units of \(k\). At the infinite level, the method relates the deep arithmetic of special units with those of profinite Galois groups. For example, for special cases of \(S\) and \(T\), the invariants \(\mathscr{G}\) are related to the conjectures of Gross (or Kuz’min-Gross) and Leopoldt and accordingly, in these special cases, the functorial interpretation of \(\mathscr{G}\) as \(S\) and \(T\) vary involves interesting connections between the conjectures of Gross and Leopoldt in a simpler and more concrete way. As a result, we conjecture that \(\mathscr{G}\) is finite for all finite disjoint sets \(S, T\) over the cyclotomic \(\mathbb{Z}_p\)-tower of \(k\), which includes the conjectures of Gross and Leopoldt as special cases.

MSC:

11R23 Iwasawa theory
11R27 Units and factorization
11R29 Class numbers, class groups, discriminants
11R37 Class field theory
11S25 Galois cohomology
11S31 Class field theory; \(p\)-adic formal groups
Full Text: DOI

References:

[1] C. D. González-Avilés 2007 Capitulation, ambiguous classes and the cohomology of units J. Reine Angew. Math.2007 613 75-97 · Zbl 1226.11122 · doi:10.1515/CRELLE.2007.092
[2] G. Gras 1982 Groupe de Galois de la \(p\)-extension abélienne \(p\)-ramifiée maximale d’un corps de nombres J. Reine Angew. Math.1982 333 86-132 · Zbl 0477.12009 · doi:10.1515/crll.1982.333.86
[3] G. Gras 2003 Class field theory. From theory to practice Springer Monogr. Math. Springer-Verlag, Berlin · Zbl 1019.11032 · doi:10.1007/978-3-662-11323-3
[4] L. V. Kuz’min 1972 The Tate module for algebraic number fields Izv. Akad. Nauk SSSR Ser. Mat.36 2 267-327 · Zbl 0231.12013
[5] English transl. L. V. Kuz’min 1972 Math. USSR-Izv.6 2 263-321 · Zbl 0257.12003 · doi:10.1070/IM1972v006n02ABEH001875
[6] B. Gross \(1981 p\)-adic \(L\)-series at \(s = 0\) J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 3 979-994 · Zbl 0507.12010
[7] K. Iwasawa 1983 On cohomology groups of units for \(\mathbf Z_p\)-extensions Amer. J. Math.105 1 189-200 · Zbl 0525.12009 · doi:10.2307/2374385
[8] L. V. Kuz’min 1996 On formulae for the class number of real Abelian fields Izv. RAN. Ser. Mat.60 4 43-110 · Zbl 1007.11065 · doi:10.4213/im79
[9] English transl. L. V. Kuz’min 1996 Izv. Math.60 4 695-761 · Zbl 1007.11065 · doi:10.1070/IM1996v060n04ABEH000079
[10] J. Neukirch, A. Schmidt, and K. Wingberg 2008 Cohomology of number fields Grundlehren Math. Wiss. 323 Springer-Verlag, Berlin 2nd ed. · Zbl 1136.11001 · doi:10.1007/978-3-540-37889-1
[11] N. Bourbaki 1960, 1961 Éléments de mathématique, Fasc. II, III. Première partie. Livre III: Topologie générale. Ch. 1, 2, 3, 4 Actualités Sci. Indust. 1142, 1143 Hermann, Paris 3-éme éd. · Zbl 0102.27104
[12] English transl. N. Bourbaki 1966 Elements of mathematics. General topology, Part 1 Hermann, Paris, Addison-Wesley, Reading, MA-London-Don Mills, ON · Zbl 0145.19302
[13] Russian transl. N. Bourbaki 1968 Elements of mathematics. General topology, Part 1 Nauka, Moscow · Zbl 0175.27001
[14] J.-F. Jaulent 1986 L’arithmétique des \(\ell \)-extensions Publ. Math. Fac. Sci. Besançon Thèse de doctorat d’etat en mathématiques Univ. Franche-Comté, Besançon Théorie des nombres. Fasc. 1. 1984-1986 http://pmb.univ-fcomte.fr/1986.html · Zbl 0601.12002
[15] J.-F. Jaulent 1998 Théorie \(\ell \)-adique globale du corps de classes J. Théor. Nombres Bordeaux10 2 355-397 · Zbl 0938.11052 · doi:10.5802/jtnb.233
[16] Thong Nguyen-Quang-Do 1986 Sur la \(\mathbb{Z}_p\)-torsion de certains modules galoisiens Ann. Inst. Fourier (Grenoble)36 2 27-46 · Zbl 0576.12010 · doi:10.5802/aif.1045
[17] M. Karoubi and T. Lambre 2009 Sur la \(K\)-théorie du foncteur norme J. Algebra321 10 2754-2781 · Zbl 1178.19003 · doi:10.1016/j.jalgebra.2008.09.044
[18] K. Iwasawa 1973 On \(\mathbf Z_l\)-extensions of algebraic number fields Ann. of Math. (2)98 2 246-326 · Zbl 0285.12008 · doi:10.2307/1970784
[19] A. Brumer 1967 On the units of algebraic number fields Mathematika14 2 121-124 · Zbl 0171.01105 · doi:10.1112/S0025579300003703
[20] R. Greenberg 1978 On the structure of certain Galois groups Invent. Math.47 1 85-99 · Zbl 0403.12004 · doi:10.1007/BF01609481
[21] S. Seo 2020 On the universal norm elements and Coleman’s problem Yonsei University, Seoul Preprint
[22] N. Bourbaki 1961-1965 Éléments de mathématique, Fasc. XXVII, XXVIII, XXX, XXXI. Algèbre commutative Actualités Sci. Indust. 1290, 1293, 1308, 1314 Hermann, Paris · Zbl 0108.04002
[23] English transl. N. Bourbaki 1972 Elements of mathematics. Commutative algebra Hermann, Paris, Addison-Wesley, Reading, MA · Zbl 0279.13001
[24] Russian transl. N. Bourbaki 1971 Elements of mathematics. Commutative algebra Moscow, Mir · Zbl 0217.20401
[25] M. Kolster 1991 An idelic approach to the wild kernel Invent. Math.103 1 9-24 · Zbl 0724.11056 · doi:10.1007/BF01239507
[26] J.-F. Jaulent 1994 Classes logarithmiques des corps de nombres J. Théor. Nombres Bordeaux6 2 301-325 · Zbl 0827.11064 · doi:10.5802/jtnb.117
[27] J.-F. Jaulent 2002 Classes logarithmiques des corps totalement réels Acta Arith.103 1 1-7 · Zbl 1001.11044 · doi:10.4064/aa103-1-1
[28] S. Seo 2015 On the conjectures of Gross and Leopoldt Math. Res. Lett.22 5 1509-1540 · Zbl 1411.11100 · doi:10.4310/MRL.2015.v22.n5.a11
[29] P. Schneider 1979 Über gewisse Galoiskohomologiegruppen Math. Z.168 2 181-205 · Zbl 0421.12024 · doi:10.1007/BF01214195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.