×

Inerter-like devices used for vibration isolation: a historical perspective. (English) Zbl 1455.93136

Summary: Recently, a lot of attention has been given to a mechanical device known as the inerter. It is a mechanical component that can be compared to a capacitor with two ungrounded terminals in the mechanical-electrical systems analogy. In this paper, it is shown that although the concept of an inerter as a separate mechanical element is relatively new, there are several well-established vibration isolation systems that exhibit similar behavior to a simple lumped parameter system containing an inerter. Through a review of the literature, a link is established between the old and new ideas. Furthermore, a comparison between the systems is carried out using the quantities of mechanical impedance and displacement transmissibility. The advantages and disadvantages of using the inerter in vibration isolation are discussed, and a simple way of improving the high-frequency performance without severely degrading the low-frequency performance is described.

MSC:

93C95 Application models in control theory
70Q05 Control of mechanical systems
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
Full Text: DOI

References:

[1] Smith, M., Synthesis of mechanical networks: The inerter, IEEE Trans. Autom. Control, 47, 10, 1648-1662 (2002) · Zbl 1364.70038
[2] Chen, M. Z.; Papageorgiou, C.; Scheibe, F.; Wang, F. C.; Smith, M. C., The missing mechanical circuit element, IEEE Circuits Syst. Mag., 9, 1, 10-26 (2009)
[3] Rivin, E. E.I., Passive Vibration Isolation (2003), ASME Press
[4] Eliseev, S., Structural Theory of Vibration Protection Systems (1978), Nauka Publishinh House [in Russian]
[5] M.C. Smith, Force-controlling mechanical device, US Patent 7(316) 303. https://patents.google.com/patent/US7316303B2/en.
[6] A. Goodwin, Vibration isolators, US Patent 3(202) 388. https://www.google.com/patents/US3202388.
[7] Schönfeld, J., Analogy of hydraulic, mechanical, acoustic and electric systems, applied scientific research, Section A, 3, 1, 417-450 (1954)
[8] R.E. Rasmussen, Engine mount, US Patent 3(137) 466.
[9] W. Flannelly, Dynamic antiresonant vibration isolator, US Patent 3(322) 379 A. https://www.google.com/patents/US3322379.
[10] Shearer, J. L.; Murphy, A. T.; Richardson, H. H., Introduction to System Dynamics, Vol. 7017 (1967), Addison-Wesley
[11] Liu, C.; Jing, X.; Chen, Z., Band stop vibration suppression using a passive x-shape structured lever-type isolation system, Mech. Syst. Signal Process., 68-69, 342-353 (2016)
[12] Dylejko, P. G.; MacGillivray, I. R., On the concept of a transmission absorber to suppress internal resonance, J. Sound Vib., 333, 10, 2719-2734 (2014)
[13] Yilmaz, C.; Kikuchi, N., Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications, J. Sound Vib., 291, 3-5, 1004-1028 (2006)
[14] Li, K.; Gohnert, M., Lever mechanism for vibration isolation, Appl. Technol. Innov., 1, 1, 21-28 (2010)
[15] Ivovich, V.; Savovich, M., Isolation of floor machines by lever-type inertial vibration corrector, Proceedings of the ICE - Structures and Buildings, 146, 391-402 (2001)
[16] Ibrahim, R. R., Recent advances in nonlinear passive vibration isolators, J. Sound Vib, 314, 3-5, 371-452 (2008)
[17] Desjardins, R. A.; Hooper, W. E., Antiresonant rotor isolation for vibration reduction, J. Am. Helicopter Soc., 25, 3, 46-55 (1980)
[18] John, E. D.A.; Wagg, D. J., Design and testing of a frictionless mechanical inerter device using living-hinges, J. Frankl. Inst., 356, 7650-7668 (2019) · Zbl 1422.93128
[19] Golnaraghi, M. F.; Jazar, G. N., Development and analysis of a simplified nonlinear model of a hydraulic engine mount, J. Vib. Control, 7, 4, 495-526 (2001) · Zbl 1006.70504
[20] Kim, G., Study of Passive and Adaptive Hydraulic Engine Mounts (1992), The Ohio State University
[21] Yu, Y.; Naganathan, N. G.; Dukkipati, R. V., A literature review of automotive vehicle engine mounting systems, Mech. Mach. Theory, 36, 1, 123-142 (2001) · Zbl 1140.70421
[22] Singh, R.; Kim, G.; Ravindra, P. V., Linear analysis of automotive hydro-mechanical mount with emphasis on decoupler characteristics, J. Sound Vib., 158, 2, 219-243 (1992)
[23] Christopherson, J.; Jazar, G. N., Dynamic behavior comparison of passive hydraulic engine mounts. part 1: mathematical analysis, J. Sound Vib, 290, 3-5, 1040-1070 (2006)
[24] Mansour, H.; Arzanpour, S.; Golnaraghi, M. F., Active decoupler hydraulic engine mount design with application to variable displacement engine, J. Vib. Control, 17, 10, 1498-1508 (2011)
[25] Plooy, N. F.D.; Heyns, P. S.; Brennan, M. J., The development of a tunable vibration absorbing isolator, Int. J. Mech. Sci., 47, 7, 983-997 (2005) · Zbl 1192.74193
[26] Miller, L.; Ahmadian, M.; Nobles, C.; Swanson, D., Modelling and performance of an experimental active vibration isolator, J. Vib. Acoust., 117, 3A, 272-278 (1995)
[27] Halwes, D.; Nicks, C., Six Degree-of-Freedom “Live” Isolation System Tests (1986), NASA - CR 177928, Tech. rep.
[28] Cronjé, J. M.; Heyns, P. S.; Theron, N. J.; Loveday, P. W., Development of a variable stiffness and damping tunable vibration isolator, JVC/J. Vib. Control, 11, 3, 381-396 (2005) · Zbl 1182.70053
[29] Wang, F.; Hong, M.; Lin, T., Designing and testing a hydraulic inerter, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 225, 1, 66-72 (2011)
[30] Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M., Passive and active vibration isolation systems using inerter, J. Sound Vib., 418, 31, 163-183 (2018)
[31] Liu, C.; Xu, D.; Ji, J., Theoretical design and experimental verification of a tunable floating vibration isolation system, J. Sound Vib., 331, 21, 4691-4703 (2012)
[32] Chen, M.; Hu, Y.; Huang, L.; Chen, G., Influence of inerter on natural frequencies of vibration systems, J. Sound Vib., 333, 7, 1874-1887 (2014)
[33] Kuznetsov, A.; Mammadov, M.; Sultan, I.; Hajilarov, E., Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis, Arch. Appl. Mech., 81, 10, 1427-1437 (2011)
[34] Hu, Y.; Chen, M. Z.; Shu, Z., Passive vehicle suspensions employing inerters with multiple performance requirements, J. Sound Vib., 333, 8, 2212-2225 (2014)
[35] Jiamei, N.; Xiaoliang, Z.; Long, C., Suspension employing inerter and optimization based on vibration isolation theory on electrical-mechanical analogies, Proceedings of the International Conference on Optoelectronics and Image Processing, Vol. 2, 481-484 (2010), IEEE
[36] Zhang, X. J.; Ahmadian, M.; Guo, K. H., On the benefits of semi-active suspensions with inerters, Shock Vib., 19, 3, 257-272 (2012)
[37] Soong, M.; Ramli, R., Ride evaluation of vehicle suspension employing non-linear inerter, Appl. Mech. Mater. Chapter 1, 9-13 (2014)
[38] Zhang, Z.; Chen, M. Z.Q.; Huang, L., Frequency response of a suspension system with inerter and play, 21st International Congress on Sound and Vibration 2014, ICSV 2014, 5, 3827-3834 (2014)
[39] Wang, F.-C.; Liao, M. K., The lateral stability of train suspension systems employing inerters, Veh. Syst. Dyn., 48, 5, 619-643 (2010)
[40] Jiang, J. Z.; Matamoros-Sanchez, A. Z.; Goodall, R. M.; Smith, M. C., Passive suspensions incorporating inerters for railway vehicles, Veh. Syst. Dyn., 50, sup1, 263-276 (2012)
[41] Moraes, F.; Silveira, M.; Gonçalves, P., On the dynamics of a vibration isolator with geometrically nonlinear inerter, Nonlinear Dyn., 93, 3, 1325-1340 (2018)
[42] Zhang, Y.-W.; Lu, Y.-N.; Zhang, W.; Teng, Y.-Y.; Yang, H.-X.; Yang, T.-Z.; Chen, L. Q., Nonlinear energy sink with inerter, Mech. Syst. Signal Process., 125, 52-64 (2019)
[43] Liu, Y.; Chen, M. Z.Q.; Tian, Y., Nonlinearities in landing gear model incorporating inerter, Proceedings of the IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, 696-701 (2015)
[44] Lazar, I. F.; Neild, S. A.; Wagg, D. J., Using an inerter-based device for structural vibration suppression, Earthq. Eng. Struct. Dyn., 43, 8, 1129-1147 (2013)
[45] Wang, F. C.; Chen, C. W.; Liao, M. K.; Hong, M. F., Performance analyses of building suspension control with inerters, Proceedings of the IEEE Conference on Decision and Control, 3786-3791 (2007)
[46] De Domenico, D.; Impollonia, N.; Ricciardi, G., Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper, Soil Dyn. Earthq. Eng., 105, 37-53 (2018)
[47] De Domenico, D.; Ricciardi, G., An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI), Earthq. Eng. Struct. Dyn., 47, 5, 1169-1192 (2018)
[48] Zhao, Z.; Zhang, R.; Lu, Z., A particle inerter system for structural seismic response mitigation, Journal of the Franklin Institute, 356, 7669-7688 (2019) · Zbl 1422.93142
[49] Palacios-Quiñonero, F.; Rubió-Massegú, J.; Rossell, J. M.; Karimi, H. R., Design of inerter-based multi-actuator systems for vibration control of adjacent structures, Journal of the Franklin Institute, 356, 7785-7809 (2019) · Zbl 1422.93135
[50] Shi, X.; Zhu, S., Dynamic characteristics of stay cables with inerter dampers, J. Sound Vib., 423, 287-305 (2018)
[51] Marian, L.; Giaralis, A., Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probab. Eng. Mech., 38, 156-164 (2014)
[52] Brzeski, P.; Pavlovskaia, E.; Kapitaniak, T.; Perlikowski, P., The application of inerter in tuned mass absorber, Int. J. Non-Linear Mech., 70, 20-29 (2014)
[53] Li, C.; Liang, M.; Wang, Y.; Dong, Y., Vibration suppression using two-terminal flywheel. part i: modeling and characterization, J. Vib. Control, 18, 8, 1096-1105 (2011)
[54] Li, C.; Liang, M.; Wang, Y.; Dong, Y., Vibration suppression using two-terminal flywheel. part II: application to vehicle passive suspension, J. Vib. Control, 18, 9, 1353-1365 (2012)
[55] Scarborough, L. H.; Rahn, C. D.; Smith, E. C., Fluidic composite tunable vibration isolators, J. Vib. Acoust., 134, 1, 011010 (2012)
[56] Hu, Y.; Chen, M.; Shu, Z.; Huang, L., Vibration analysis for isolation system with inerter, Proceedings of the 33rd Chinese Control Conference, 6687-6692 (2014), IEEE
[57] Krenk, S.; Høgsberg, J., Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 472, 20150718 (2016) · Zbl 1371.70057
[58] Ch. 16
[59] Siami, A.; Karimi, H.; Cigada, A.; Zappa, E.; Sabbioni, E., Parameter optimization of an inerter-based isolator for passive vibration control of michelangelo’s rondanini pietà, Mech. Syst. Signal Process., 98, 667-683 (2018)
[60] Hu, Y.; Wang, J.; Chen, M. Z.; Li, Z.; Sun, Y., Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control, Eng. Struct., 177, 198-209 (2018)
[61] Wang, F. C.; Lee, C. H.; Zheng, R. Q., Benefits of the inerter in vibration suppression of a milling machine, Journal of the Franklin Institute, 356, 7689-7703 (2019) · Zbl 1422.93139
[62] Lazarek, M.; Brzeski, P.; Perlikowski, P., Design and modeling of the CVT for adjustable inerter, Journal of the Franklin Institute, 356, 7611-7625 (2019) · Zbl 1422.93130
[63] Basili, M.; De Angelis, M.; Pietrosanti, D., Modal analysis and dynamic response of a two adjacent single degree of freedom systems linked by spring-dashpot-inerter elements, Eng. Struct., 174, 736-752 (2018)
[64] R. Jones, The exploratory development of the three-dimensional dynamic antiresonant vibration isolator for rotary-wing application, 1970, Tech. rep.http://www.dtic.mil/docs/citations/AD0875285.
[65] Crandall, S., Dynamics of Mechanical and Electromechanical Systems (1968), McGraw-Hill
[66] Preumont, A., Mechatronics - Dynamics of Electromechanical and Piezoelectric Systems (2006), Springer · Zbl 1109.70300
[67] Minnemann Kuhnert, W.; Cammarano, A.; Silveira, M.; Paupitz Gonçalves, P. J., Optimum design of electromechanical vibration isolators, JVC/Journal of Vibration and Control (2020), 107754632092536
[68] Gonzalez-Buelga, A.; Clare, L. R.; Neild, S. A.; Jiang, J. Z.; Inman, D. J., An electromagnetic inerter-based vibration suppression device, Smart Mater. Struct., 24, 5, 055015 (2015)
[69] Wang, F. C.; Chan, H. A., Vehicle suspensions with a mechatronic network strut, Veh. Syst. Dyn., 49, 811-830 (2011)
[70] Hu, Y.; Chen, M. Z.Q.; Shu, Z.; Huang, L., Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution, J. Sound Vib., 346, 17-36 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.