×

A fuzzy control framework for interconnected nonlinear power networks under TDS attack: estimation and compensation. (English) Zbl 1455.93111

Summary: This article focuses on time delay switch (TDS) attacks on power networks subject to highly nonlinear and interconnection. T-S model is utilized to represent each nonlinear power subsystem in the network. In order to attenuate adverse impacts from TDS attacks, a novel control technique of estimation and compensation is proposed. Combined with the method of finite-time boundedness (FTB), transient stability of power systems could be achieved. First, an augmented fuzzy observer is constructed to capacitate a synchronous estimation for system states and TDS attacks, which ensures that the estimation error is limited via the intersection operation of ellipsoids within a specified finite time interval. Then, a compensation technique is employed to attenuate the influence from TDS attacks. Finally, simulation results of a distributed power network show the efficacy of the proposed method against TDS attacks.

MSC:

93C42 Fuzzy control/observation systems
93B70 Networked control
93B53 Observers
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Y. Yang, S. Wang, M. Wen, W. Xu, Reliability modeling and evaluation of cyber-physical system (CPS) considering communication failures, J. Frankl. Inst. doi:10.1016/j.jfranklin.2018.09.025. · Zbl 1459.94011
[2] Cao, X.; Cheng, P.; Chen, J.; Sun, Y., An online optimization approach for control and communication codesign in networked cyber-physical systems, IEEE Trans. Ind. Informat., 9, 1, 439-450 (2013)
[3] Cao, X.; Cheng, P.; Chen, J.; Ge, S.; Cheng, Y.; Sun, Y., Cognitive radio based state estimation in cyber-physical systems, IEEE J. Select. Areas Commun., 32, 3, 489-502 (2014)
[4] Chen, J.; Cao, X.; Cheng, P.; Xiao, Y.; Sun, Y., Distributed collaborative control for industrial automation with wireless sensor and actuator networks, IEEE Trans. Ind. Electr., 57, 12, 4219-4230 (2010)
[5] Yin, X.; Li, Z.; Zhang, L.; Han, M., Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process, IEEE Trans. Syst. Man Cybern. Syst., 48, 6, 864-874 (2018)
[6] Yin, X.; Liu, J., Distributed moving horizon state estimation of two-time-scale nonlinear systems, Automatica, 79, 152-161 (2017) · Zbl 1371.93031
[7] Farina, M.; Ferrari-Trecate, G.; Scattolini, R., Moving-horizon partition-based state estimation of large-scale systems, Automatica, 46, 5, 910-918 (2010) · Zbl 1191.93130
[8] Molzahn, D.; Dörfler, F.; Sandberg, H.; Low, S.; Chakrabarti, S.; Baldick, R.; Lavaei, J., A survey of distributed optimization and control algorithms for electric power systems, IEEE Trans. Smart Grid, 8, 6, 2941-2962 (2017)
[9] Zhong, Z.; Lin, C.; Shao, Z.; Xu, M., Decentralized event-triggered control for large-scale networked fuzzy systems, IEEE Trans. Fuzzy Syst., 26, 1, 29-45 (2018)
[10] Zhong, Z.; Zhu, Y.; Lam, H. K., Asynchronous piecewise output-feedback control for large-scale fuzzy systems via distributed event-triggering schemes, IEEE Trans. Fuzzy Syst., 26, 3, 1688-1703 (2018)
[11] Zhong, Z.; Wai, R. J.; Shao, Z.; Xu, M., Reachable set estimation and decentralized controller design for large-scale nonlinear systems with time-varying delay and input constraint, IEEE Tran. Fuzzy Syst., 25, 6, 1629-1643 (2017)
[12] Cao, X.; Cheng, P.; Chen, J.; Sun, Y., An online optimization approach for control and communication codesign in networked cyber-physical systems, IEEE Trans. Ind. Informat., 9, 1, 439-450 (2013)
[13] Yan, R.; Dong, Z.; Saha, T.; Majumder, R., A power system nonlinear adaptive decentralized controller design, Automatica, 46, 330-336 (2010) · Zbl 1205.93048
[14] Zhong, Z.; Fu, S.; Hayat, T.; Alsaadi, F.; Sun, G., Decentralized piecewise H-infinity fuzzy filtering design for discrete-time large-scale nonlinear systems with time-varying delay, J. Frankl. Inst., 352, 9, 3782-3807 (2015) · Zbl 1395.93085
[15] Qiu, J.; Gao, H.; Ding, S. X., Recent advances on fuzzy-model-based nonlinear networked control systems: a survey, IEEE Trans. Ind. Electr., 63, 2, 1207-1217 (2016)
[16] Zhong, Z.; Zhu, Y., Observer-based output-feedback control of large-scale networked fuzzy systems with two-channel event-triggering, J. Frankl. Inst., 354, 13, 5398-5420 (2017) · Zbl 1395.93339
[17] Zhong, Z.; Lin, C., Large-Scale Fuzzy Interconnected Control Systems Design and Analysis (2017), Hershey: IGI Global
[18] Cheng, J.; Park, J.; Zhang, L.; Zhu, Y., An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies, IEEE Trans. Fuzzy Syst., 26, 1, 6-18 (2018)
[19] H. Zhang, W. Zheng, Dos attack energy management against remote state estimation, IEEE Trans Control Netw. Syst. doi:10.1109/TCNS.2016.2614099. · Zbl 1507.93242
[20] H. Zhang, W. Meng, J. Qi, X. Wang, W. Zheng, Distributed load sharing under false data injection attack in inverter-based microgrid, IEEE Trans. Ind. Electron. doi:10.1109/TIE.2018.2793241.
[21] Zhang, H.; Qi, Y.; Wu, J.; Fu, L.; He, L., Dos attack energy management against remote state estimation, IEEE Trans. Control Netw. Syst., 5, 1, 383-394 (2018) · Zbl 1507.93242
[22] H. Zhang, W. Zheng, Denial-of-service power dispatch against linear quadratic control via a fading channel, IEEE Trans. Autom. Control. doi:10.1109/TAC.2018.2789479. · Zbl 1423.90164
[23] Sargolzaei, A.; Yen, K.; Abdelghani, M.; Sargolzaei, S.; Carbunar, B., Resilient design of networked control systems under time delay switch attacks, application in smart grid, IEEE Access, 5, 15901-15912 (2017)
[24] Zhang, H.; Cheng, P.; Wu, J.; Shi, L.; Chen, J., Online deception attack against remote state estimation, Proceedings of the World Congress of the International Federation of Automatic Control (IFAC) (2014)
[25] H. Zhang, W. Zheng, Denial-of-service power dispatch against linear quadratic control via a fading channel, IEEE Trans. Autom. Control. doi:10.1109/TAC.2018.2789479. · Zbl 1423.90164
[26] Basin, M.; Yu, P.; Shtessel, Y., Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers, IEEE Trans. Ind. Electron., 65, 1, 930-941 (2018)
[27] Li, S.; Sun, H.; Yang, J.; Yu, X., Continuous finite-time output regulation for disturbed systems under mismatching condition, IEEE Trans. Autom. Control, 60, 1, 277-282 (2015) · Zbl 1360.93255
[28] Basin, M.; Panathula, C.; Shtessel, Y.; Ramĺrez, P., Continuous finite-time higher order output regulators for systems with unmatched unbounded disturbances, IEEE Trans. Ind. Electron., 63, 8, 5036-5043 (2016)
[29] Pan, W.; Yuan, Y.; Sandberg, H.; Gonćalves, J.; Stan, G., Online fault diagnosis for nonlinear power systems, Automatica, 55, 27-36 (2015) · Zbl 1378.93139
[30] ElBsat, M.; Yaz, E., Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems, Automatica, 49, 2292-2296 (2013) · Zbl 1364.93629
[31] Gao, Z., Estimation and compensation for Lipschitz nonlinear discrete-time systems subjected to unknown measurement delays, IEEE Trans. Ind. Electron., 62, 9, 5950-5961 (2015)
[32] Zhong, Z.; Zhu, Y.; Ahn, C., Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs, ISA Trans., 78, 31-38 (2018)
[33] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), PA: SIAM · Zbl 0816.93004
[34] Y. Zhu, Z. Zhong, W. Zheng, D. Zhou, HMM-based H_∞ filtering for discrete-time markov jump LPV systems over unreliable communication channels, IEEE Trans. Syst. Man Cybern. Syst. doi:10.1109/TSMC.2017.2723038.
[35] Zhang, L.; Zhu, Y.; Zheng, W., State estimation of discrete-time switched neural networks with multiple communication channels, IEEE Trans. Cybern., 47, 4, 1028-1040 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.