×

Analysis and tuning of reduced-order active disturbance rejection control. (English) Zbl 1455.93016

Summary: To reduce the phase lag introduced by extended state observer (ESO), an reduced-order active disturbance rejection control (RADRC) method is recommended. This paper investigates the structure and parameter tuning of RADRC. Firstly, it is shown that RADRC can serve as a general-purpose fixed-structure controller because any proper controller with integrator can be realized via an RADRC. Then the relationship between the parameters of an RADRC and those of a full-order linear active disturbance rejection control (LADRC) is analyzed. It is shown that an RADRC with the proper controller and observer gains can obtain similar disturbance-rejection performance as a full-order LADRC. Simulation results demonstrate that any plant that can be controlled by LADRC can also be controlled by an RADRC with a similar disturbance-rejection performance.

MSC:

93B11 System structure simplification
93B35 Sensitivity (robustness)
93B53 Observers
Full Text: DOI

References:

[1] Han, J., Active disturbance rejection controller and its applications, Control Decis., 13, 1, 19-23 (1998)
[2] Han, J., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906 (2009)
[3] Gao, Z., Scaling and Bandwidth-parameterization Based Controller Tuning, 2003 American Control Conference, 6, pages (2003), IEEE
[4] 2006 American Control Conference
[5] 3501C3506
[6] Zheng, Q.; Gao, L.; Gao, Z., On validation of extended state observer through analysis and experimentation, J. Dyn. Syst. Meas.Control, 134, 2, 024505 (2012)
[7] Guo, B.; Zhou, H., Active disturbance rejection control for rejecting boundary disturbance from multidimensional Kirchhoff plate via boundary control, SIAM J. Control Optim., 52, 52, 2800-2830 (2014) · Zbl 1305.74056
[8] Guo, B.; Wu, Z.; Zhou, H., Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance, IEEE Trans. Autom. Control, 61, 6, 1613-1618 (2016) · Zbl 1359.93449
[9] Ran, M.; Wang, Q.; Dong, C., Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control, Automatica, 63, 302-310 (2016) · Zbl 1329.93121
[10] Wang, Y.; Liu, J.; Chen, Z.; Sun, M.; Sun, Q., On the stability and convergence rate analysis for the nonlinear uncertain systems based upon active disturbance rejection control, Int. J. Robust Nonlinear Control, 30, 14, 5728-5750 (2020) · Zbl 1465.93172
[11] Chen, S.; Xue, W.; Huang, Y., On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement, Int. J. Robust Nonlinear Control., 30, 3411-3435 (2020) · Zbl 1466.93027
[12] Zheng, Q.; Gao, Z., Predictive active disturbance rejection control for processes with time delay, ISA Trans., 53, 4, 873-881 (2014)
[13] Chen, S.; Xue, W.; Zhong, S.; Huang, Y., On comparison of modified ADRCs for nonlinear uncertain systems with time delay, Sci. China Inf. Sci., 61, 7, 70223 (2018)
[14] Zhao, S.; Gao, Z., Modified active disturbance rejection control for time-delay systems, ISA Trans., 53, 4, 882-888 (2014)
[15] Fu, C.; Tan, W., Linear active disturbance rejection control for processes with time delays: IMC interpretation, IEEE Access, 8, 16606-16617 (2020)
[16] Ran, M.; Wang, Q.; Dong, C.; Xie, L., Active disturbance rejection control for uncertain time-delay nonlinear systems, Automatic, 112, 108692 (2020) · Zbl 1430.93048
[17] Ramirez-Neria, M.; Sira-Ramirez, H.; Garrido-Moctezuma, R.; Luviano-Juarez, A., Active disturbance rejection control of the inertia wheel pendulum through a tangent linearization approach, Int. J. Control Autom.Syst., 17, 1, 18-28 (2019)
[18] Nie, J.; Duan, R.; Shi, B.; Jin, L., An energy balance active disturbance rejection control for improving converter stability while maintaining fast dynamic performance, IEEE Trans. Power Electron., 35, 11, 11304-11309 (2020)
[19] 963C976
[20] Feng, H.; Guo, B., Active disturbance control: old and new results, Annu. Rev. Control, 44, 1, 238-248 (2017)
[21] Wu, Z.; Zhou, H.; Guo, B.; Deng, F., Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems, Nonlinear Dyn., 101, 2, 935-959 (2020) · Zbl 1516.93172
[22] Wu, D.; Chen, K., Design and analysis of precision active disturbance rejection control for noncircular turning process, IEEE Trans. Ind. Electron., 56, 7, 2746-2753 (2009)
[23] Zhao, S.; Gao, Z., An active disturbance rejection based approach to vibration suppression in two-inertia systems, Asian J. Control, 15, 2, 350-362 (2013) · Zbl 1327.93150
[24] Yuan, Y.; Wang, Z.; Yu, Y.; Guo, L.; Yang, H., An enhanced linear active disturbance rejection rotor position sensorless control for permanent magnet synchronous motors, IEEE Trans. Power Electron., 107, 353-361 (2019) · Zbl 1429.93086
[25] Zheng, Q.; Chen, Z.; Gao, Z., A practical approach to disturbance decoupling control, Control Eng. Pract., 17, 9, 1016-1025 (2009)
[26] Dong, L.; Edwards, J., Active disturbance rejection control for an electro-statically actuated MEMS device, Int. J. Intell. Control Syst., 16, 3, 160-169 (2011)
[27] Tan, W.; Zhou, H.; Fu, C., Linear active disturbance rejection control for load frequency control of power systems, Control Theory Appl., 30, 12, 1580-1588 (2013)
[28] Fu, C.; Tan, W., Decentralized load frequency control for power systems with communication delays via active disturbance rejection, IET Gener. Transm. Distrib., 12, 6, 1397-1403 (2018)
[29] Das, S.; Subudhi, B., A two-degree-of-freedom internal model-based active disturbance rejection controller for a wind energy conversion system, IEEE J. Emerg. Sel. Top.Power Electron., 8, 3, 2664-2671 (2020)
[30] Wu, Z.; Li, D.; Xue, Y.; Sun, L.; He, T.; Zheng, S., Modified active disturbance rejection control for fluidized bed combustor, ISA Trans., 102, 135-153 (2020)
[31] Wang, L.; Li, Q.; Tong, C.; Yin, Y., Overview of active disturbance rejection control for systems with time-delay, Control Theory Appl., 30, 12, 1521-1533 (2013) · Zbl 1299.93065
[32] Ramirez-Neria, M.; Sira-Ramirez, H.; Garrido-Moctezuma, R.; Luviano-Juarez, A., Linear active disturbance rejection control of underactuated systems: the case of the furuta pendulum, ISA Trans., 53, 4, 920-928 (2014)
[33] Chang, X.; Li, Y.; Zhang, W.; Wang, N.; Xue, W., Active disturbance rejection control for a flywheel energy storage system, IEEE Trans. Ind. Electron., 62, 2, 991-1001 (2015)
[34] Sun, L.; Hua, Q.; Li, D.; Pan, L.; Xue, Y.; Lee, K. Y., Direct energy balance based active disturbance rejection control for coal-fired power plant, ISA Trans., 70, 486-493 (2017)
[35] Jiang, Y.; Sun, Q.; Zhang, X.; Chen, Z., Pressure regulation for oxygen mask based on active disturbance rejection control, IEEE Trans. Ind. Electron., 64, 8, 6402-6411 (2017)
[36] Qu, L.; Qiao, W.; Qu, L., An enhanced linear active disturbance rejection rotor position sensorless control for permanent magnet synchronous motors, IEEE Trans. Power Electron., 35, 6, 6175-6184 (2020)
[37] Aole, S.; Elamvazuthi, I.; Waghmare, L.; Patre, L.; Meriaudeau, F., Improved active disturbance rejection control for trajectory tracking control of lower limb robotic rehabilitation exoskeleton, IEEE J. Emerg. Sel. Top.Power Electron., 20, 13, 3681 (2020)
[38] Zhou, R.; Tan, W., A generalized active disturbance rejection control approach for linear systems, Industrial Electronics & Applications Conference, 248-255 (2015), IEEE
[39] Fu, C.; Tan, W., Tuning of linear ADRC with known plant information, ISA Trans., 65, 11, 384-393 (2016)
[40] Fu, C.; Tan, W., Control of unstable processes with time delays via ADRC, ISA Trans., 71, 11, 530-541 (2017)
[41] Fu, C.; Tan, W., Parameters tuning of linear active disturbance rejection control based on high order controller design, Control Theory Appl., 34, 2, 265-272 (2017) · Zbl 1389.93078
[42] Zhou, R.; Tan, W., Analysis and tuning of general linear active disturbance rejection controllers, IEEE Trans. Ind. Electron., 66, 7, 5497-5507 (2018)
[43] G. Tian, Reduced-order extended state observer and frequency response analysis, 2007, Cleveland: Cleveland State University.
[44] Zheng, Q.; Chedella, K.; Xu, W.; Wu, L., Reduced-order active disturbance rejection control for induction motors, Control Applications Conference, 1139-1144 (2011), IEEE
[45] Zheng, Q.; Daluom, A.; Xu, W.; Zheng, Y., Reduced-order active disturbance rejection control for multivariable chemical processes, Industry Applications Society Annual Meeting, 1-7 (2012), IEEE
[46] Wang, L.; Li, Q.; Tong, C.; Yin, Y.; Gao, Z.; Zheng, Q.; Zhang, W., On control design and tuning for first order plus time delay plants with significant uncertainties, 2015 American Control Conference, 5276-5281 (2015), IEEE
[47] Nowak, P.; Czeczot, J.; Klopot, T., Robust tuning of a first order reduced active disturbance rejection controller, Control Eng. Pract., 74, 44-57 (2018)
[48] Sira-Ramrez, H.; Zurita-Bustamante, E. W.; Huang, C., Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control, IEEE Trans. Control Syst. Technol., 28, 5, 1696-1710 (2020)
[49] Tan, W., Unified tuning of PID load frequency controller for power systems via IMC, IEEE Trans. Power Syst., 25, 1, 341-350 (2010)
[50] Tan, W.; Fu, C., Linear active disturbance-rejection control: analysis and tuning via IMC, IEEE Trans. Ind. Electron., 63, 4, 2350-2359 (2016)
[51] Zhang, B.; Tan, W.; Li, J., Tuning of linear active disturbance rejection controller with robustness specification, ISA Trans., 85, 237-246 (2019)
[52] Johansson, K. H., The quadruple-tank process: a multivariable laboratory process with an adjustable zero, IEEE Trans. Control Syst. Technol., 8, 3, 456-465 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.