×

Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy. (English) Zbl 1455.92071

Summary: An optimal control problem of a general reaction-diffusion tumor-immune system with chemotherapy is investigated to minimize the tumor burden and side effects as well as treatment costs. Firstly, the existence, uniqueness and some estimates of strong solution to the state system in spatial dimensions \(n=1,2,3\) are obtained by making use of the semigroup theory and truncation method. Subsequently, we prove the existence of optimal pair by utilizing the minimizing sequence technique. Furthermore, we show the differentiability of the control-to-state mapping and establish the first-order necessary optimality condition. Finally, several numerical simulations are presented to illustrate the practical application of the theoretical results obtained in this work and to validate some clinical observations.

MSC:

92C50 Medical applications (general)
49J20 Existence theories for optimal control problems involving partial differential equations
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Ghosh, D.; Khajanchi, S.; Mangiarotti, S.; Denis, F.; Dana, S. K.; Letellier, C., How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment?, BioSystems, 158, 17-30 (2017)
[2] Ansarizadeh, F.; Singh, M.; Richards, D., Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Model., 48, 96-112 (2017) · Zbl 1480.92101
[3] Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D., Molecular Biology of the Cell (1994), Garland Publishing
[4] Chaplain, M. A.J.; Lolas, G., Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Netw. Heterogen. Med., 1, 3, 399-439 (2006) · Zbl 1108.92023
[5] Liotta, L. A.; Stetler-Stevenson, W. G., Tumor invasion and metastasis as targets for cancer therapy, Cancer Res., 51, 5054-5059 (1991)
[6] Liotta, L. A.; Clair, T., Checkpoint for invasion, Nature, 405, 6784, 287-288 (2000)
[7] Dunn, G. P.; Old, L. J.; Schreiber, R. D., The three ES of cancer immunoediting, Annu. Rev. Immunol., 22, 329-360 (2004)
[8] O’Byrne., K. J.; Dalgleish, A. G.; Browning, M. J.; Steward, W. P.; Harris, A. L., The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease, Eur. J. Cancer, 36, 2, 151-169 (2000)
[9] Dunn, G. P.; Bruce, A. T.; Ikeda, H.; Old, L. J.; Schreiber, R. D., Cancer immunoediting: from immunosurveillance to tumor escape, Nat. Immunol., 3, 11, 991-998 (2002)
[10] Pillis, L. G.d.; Radunskaya, A. E.; Wiseman, C. L., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65, 17, 7950-7958 (2005)
[11] Robertson-Tessi, M.; EI-Kareh, A.; Goriely, A., A mathematical model of tumor-immune interactions, J. Theor. Biol., 294, 56-73 (2012) · Zbl 1397.92358
[12] Eladdadi, A.; Kim, P.; Mallet, D., Mathematical Models of Tumor-Immune System Dynamics (2014), Springer: Springer New York · Zbl 1303.92004
[13] Malbacher, G. E.; Reihmer, K. C.; Frieboes, H. B., Mathematical modelling of tumor-immune cell interactions, J. Theor. Biol., 469, 47-60 (2019) · Zbl 1411.92081
[14] Khajanchi, S.; Nieto, J. J., Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340, 180-205 (2019) · Zbl 1428.92039
[15] Liu, X. D.; Li, Q. Z.; Pan, J. X., A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy, Physica A, 500, 162-176 (2018) · Zbl 1514.92044
[16] Joshi, B.; Wang, X.; Banerjee, S.; Tian, H.; Matzavinos, A.; Chaplain, M. A., On immunotherapies and cancer vaccination protocols: a mathematical modelling approach, J. Theor. Biol., 259, 4, 820-827 (2009) · Zbl 1402.92244
[17] Fister, K. R.; Panetta, J. C., Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63, 6, 1954-1971 (2003) · Zbl 1058.92025
[18] de Pillis, L. G.; Radunskaya, A., The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model., 37, 11, 1221-1244 (2003) · Zbl 1043.92018
[19] de Pillis, L. G.; Gu, W.; Fister, K. R.; Head, T.; Maples, K.; Murugan, A.; Neal, T.; Yoshida, K., Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosci., 209, 1, 292-315 (2007) · Zbl 1122.49020
[20] Krabs, W.; Pickl, S., An optimal control problem in cancer chemotherapy, Appl. Math. Comput., 217, 3, 1117-1124 (2010) · Zbl 1198.92023
[21] Ledzewicz, U.; Naghnaeian, M.; Schättler, H., Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, J. Math. Biol., 64, 3, 557-577 (2012) · Zbl 1284.92042
[22] Khajanchi, S.; Ghosh, D., The combined effects of optimal control in cancer remission, Appl. Math. Comput., 271, 375-388 (2015) · Zbl 1410.92048
[23] Rihan, F. A.; Lakshmanan, S.; Maurer, H., Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, Appl. Math. Comput., 353, 147-165 (2019) · Zbl 1428.92052
[24] Swan, G. W.; Vincent, T. L., Optimal control analysis in the chemotherapy of IGG multiple myeloma, Bull. Math. Biol., 39, 3, 317-337 (1977) · Zbl 0354.92041
[25] Murray, J. M., Optimal control for a cancer chemotherapy problem with general growth and loss functions, Math. Biosci., 98, 2, 273-287 (1990) · Zbl 0693.92009
[26] Fister, K. R.; Panetta, J. C., Optimal control applied to cell-cycle-specific chemotherapy, SIAM J. Appl. Math., 60, 3, 1059-1072 (2000) · Zbl 0991.92014
[27] Itik, M.; Salamci, M. U.; Banksa, S. P., Optimal control of drug therapy in cancer treatment, Nonlinear Anal., 71, 12, e1473-e1486 (2009)
[28] Schättler, H.; Ledzewicz, U., Optimal Control for Mathematical Models of Cancer Therapies (2015), Springer · Zbl 1331.92008
[29] de Araujo, A. L.A.; de Magalhães, P. M.D., Existence of solutions and optimal control for a model of tissue invasion by solid tumours, J. Math. Anal. Appl., 421, 1, 842-877 (2015) · Zbl 1323.92038
[30] de Araujo, A. L.A.; de Magalhães, P. M.D., Existence of solutions and local null controllability for a model of tissue invasion by solid tumors, SIAM J. Math. Anal., 50, 4, 3598-3631 (2018) · Zbl 1390.35129
[31] Dai, F.; Liu, B., Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, J. Frankl. Inst., 356, 16, 9364-9406 (2019) · Zbl 1423.92020
[32] Dai, F.; Liu, B., Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species, Appl. Math. Optim. (2020)
[33] Mansuri, J., The Modelling of Tumor Growth Using Reaction-Diffusion Equations (2002), Oxford University
[34] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications (2003), Springer: Springer New York, NY · Zbl 1006.92002
[35] de Pillis, L. G.; Mallet, D. G.; Radunskaya, A. E., Spatial tumor-immune modeling, Comput. Math. Meth. Med., 7, 2-3, 159-176 (2006) · Zbl 1111.92036
[36] Hart, D.; Shochat, E.; Agur, Z., The growth law of primary breast cancer as inferred from mammography screening trials data, Br. J. Cancer, 78, 3, 382-387 (1998)
[37] Wodarz, D.; Komarova, N. L., Dynamics of Cancer: Mathematical Foundations of Oncology (2014), World Scientific · Zbl 1318.92001
[38] Steel, G. G., Growth Kinetics of Tumours (1977), Clarendon Press: Clarendon Press Oxford
[39] Norrisa, E. S.; King, J. R.; Byrne, H. M., Modelling the response of spatially structured tumours to chemotherapy: drug kinetics, Math. Comput. Model., 43, 7-8, 820-837 (2006) · Zbl 1130.92033
[40] Vrabie, I., \(c_0\)-Semigroups and Applications (2003), North-Holland · Zbl 1119.47044
[41] Barbu, V., Mathematical Methods in Optimization of Differential Systems (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0819.49002
[42] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0516.47023
[43] Li, X. J.; Yong, J. M., Optimal Control Theory for Infinite Dimensional Systems (1995), Birkhäuser: Birkhäuser Boston, Basel, Berlin
[44] Simon, J., Compact sets in the space \(l^p ( 0 , t ; b )\), Ann. Mat. Pura Appl., 146, 1, 65-96 (1986) · Zbl 0629.46031
[45] Dai, F.; Liu, B., Optimal control problem for a general reaction-diffusion eco-epidemiological model with disease in prey, Appl. Math. Model., 88, 1-20 (2020) · Zbl 1481.92101
[46] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasi-linear equations of parabolic type, American Mathematical Society Translations, 23 (1968), AMS: AMS Providence, RI · Zbl 0174.15403
[47] Hsieh, C. L.; Chen, D. S.; Hwang, L. H., Tumor-induced immune suppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine, Hum. Gene. Ther., 11, 5, 681-692 (2000)
[48] Prigogine, I.; Lefever, R., Stability problems in cancer growth and nucleation, Compar. Biochem. Physiol. Part B: Compar. Biochem., 67, 3, 389-393 (1980)
[49] Kuznetsov, V.; Makalkin, I.; Taylor, M.; Perelson, A., Nonlinear dynamics of immunogenic tumors parameter estimation and global bifurcation analysis, Bull. Math. Bio., 56, 2, 295-321 (1994) · Zbl 0789.92019
[50] Isaeva, O.; Osipov, V., Modelling of anti-tumour immune response: immunocorrective effect of weak centimetre electromagnetic waves, Comput. Math. Methods Med., 10, 3, 185-201 (2009) · Zbl 1312.92024
[51] de Pillis, L. G.; Radunskaya, A., A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. Theor. Med., 3, 2, 79-100 (2001) · Zbl 0985.92023
[52] de Pillis, L. G.; Fister, K. R.; Gu, W.; Head, T.; Maples, K.; Neal, T.; Murugan, A.; Kozai, K., Optimal control of mixed immunotherapy and chemotherapy of tumors, J. Biol. Syst., 16, 01, 51-80 (2008) · Zbl 1147.92020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.