×

Derived representation theory of Lie algebras and stable homotopy categorification of \(sl_{k}\). (English) Zbl 1453.57013

Khovanov homology [M. Khovanov, Duke Math. J. 101, No. 3, 359–426 (2000; Zbl 0960.57005)] is now a well established categorification of the Jones polynomial which can be defined with fairly elementary means. But it can also be viewed as a categorification of representations of \(sl_2\). This less elementary point of view has led to the generalization of \(sl_k\)-Khovanov homology.
A different kind of generalization was the introduction of a stable homotopy type by R. Lipshitz and S. Sarkar [J. Am. Math. Soc. 27, No. 4, 983–1042 (2014; Zbl 1345.57014)] whose homology reduces to Khovanov homology. The paper here is now a step in obtaining a stable homotopy type for \(sl_k\)-Khovanov homology for \(k>2\). The approach is given by a generalization of a construction of J. Sussan [“Category \(\mathcal O\) and \(\mathfrak{sl}_k\) link invariants”, Preprint, arXiv:math/0701045] for \(sl_k\)-homology which requires a representation theory over the sphere spectrum \(S\). This creates various technical difficulties that the authors circumvent by working over a large prime (linearly larger than \(k\)). While this is a notable restriction, one can still expect extra information for complicated links relative to \(sl_k\)-homology.

MSC:

57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
55P42 Stable homotopy theory, spectra
55P48 Loop space machines and operads in algebraic topology
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Arone, G.; Kankaanrantha, M., The sphere operad, Bull. Lond. Math. Soc., 46, 1, 126-132, (2014) · Zbl 1284.18018
[2] Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol., 2, 337-370, (2002) · Zbl 0998.57016
[3] Beilinson, A.; Ginzburg, V.; Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc., 9, 2, 473-527, (1996) · Zbl 0864.17006
[4] Bernstein, J.; Frenkel, I.; Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of \(U(s l 2)\) via projective and Zuckerman functors, Selecta Math. (N.S.), 5, 2, 199-241, (1999) · Zbl 0981.17001
[5] Bousfield, A., The localization of spectra with respect to homology, Topology, 18, 4, 257-281, (1979) · Zbl 0417.55007
[6] Brown, E. H., Abstract homotopy theory, Trans. Amer. Math. Soc., 119, 79-85, (1965) · Zbl 0129.15301
[7] Carlsson, G., Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2), 120, 2, 189-224, (1984) · Zbl 0586.55008
[8] Ching, M., Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol., 9, 833-933, (2005) · Zbl 1153.55006
[9] Cohen, F. R.; Lada, T. J.; May, J. P., The Homology of Iterated Loop Spaces, Lecture Notes in Math., vol. 533, (1976), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0334.55009
[10] Elmendorf, A. D.; Kriz, I.; Mandell, M. A.; May, J. P., Rings, Modules, and Algebras in Stable Homotopy Theory. With an Appendix by M. Cole, Math. Surveys Monogr., vol. 47, (1997), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0894.55001
[11] Elmendorf, A. D.; Mandell, M. A., Rings, modules, and algebras in infinite loop space theory, Adv. Math., 205, 1, 163-228, (2006) · Zbl 1117.19001
[12] Fresse, B., Koszul duality of \(E_n\)-operads, Selecta Math., 17, 2, 363-434, (2011) · Zbl 1248.55003
[13] Hu, P., Higher string topology on general spaces, Proc. Lond. Math. Soc. (3), 93, 2, 515-544, (2006) · Zbl 1103.55008
[14] Hu, P.; Kriz, I.; Kriz, D., Field theories, stable homotopy theory, and Khovanov homology, Topology Proc., 48, 327-360, (2016) · Zbl 1359.55007
[15] Hu, P.; Kriz, I.; Voronov, A. A., On Kontsevich’s Hochschild cohomology conjecture, Compos. Math., 142, 1, 143-168, (2006) · Zbl 1109.18001
[16] Humphreys, J. E., Representations of Semisimple Lie Algebras in the BGG Category \(\mathcal{O}\), Grad. Stud. Math., vol. 94, (2008), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1177.17001
[17] Jones, D.; Lobb, A.; Schuetz, D., An \(s l_n\) stable homotopy type for matched diagrams, preprint
[18] Kelly, G. M., Basic Concepts of Enriched Category Theory, Repr. Theory Appl. Categ., vol. 10, (2005), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, reprint of the 1982 original · Zbl 1086.18001
[19] Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 3, 359-426, (2000) · Zbl 0960.57005
[20] Khovanov, M.; Rozansky, L., Matrix factorizations and link homology, Fund. Math., 199, 1, 1-91, (2008) · Zbl 1145.57009
[21] Khovanov, M.; Rozansky, L., Matrix factorizations and link homology II, Geom. Topol., 12, 3, 1387-1425, (2008) · Zbl 1146.57018
[22] Knapp, A. W., Lie Groups Beyond an Introduction, (1996), Birkhauser · Zbl 0862.22006
[23] Knapp, A. W.; Vogan, D. A., Cohomological Induction and Unitary Representations, Princeton Math. Ser., vol. 45, (1995), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0863.22011
[24] Kostant, B., Groups over \(\mathbb{Z}\), (Algebraic Groups and Discontinuous Subgroups. Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., vol. 9, (1986)), 90-98
[25] Kriz, I.; Lai, L., On the definition and K-theory realization of a modular functor, preprint · Zbl 1391.18007
[26] Lawson, T.; Lipshitz, R.; Sarkar, S., The cube and the Burnside category, (Categorification in Geometry, Topology, and Physics. Categorification in Geometry, Topology, and Physics, Contemp. Math., vol. 684, (2017), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 63-85 · Zbl 1380.57006
[27] Lawson, T.; Lipshitz, R.; Sarkar, S., Khovanov homotopy type, Burnside category, and products, preprint · Zbl 1515.57015
[28] Lewis, L. G.; May, J. P.; Steinberger, M., Equivariant Stable Homotopy Theory. With Contributions by J.E. McClure, Lecture Notes in Math., vol. 1213, (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0611.55001
[29] Lipshitz, R.; Sarkar, S., A Khovanov stable homotopy type, J. Amer. Math. Soc., 27, 4, 983-1042, (2014) · Zbl 1345.57014
[30] Lipshitz, R.; Sarkar, S., A Steenrod square on Khovanov homology, J. Topol., 7, 3, 817-848, (2014) · Zbl 1345.57013
[31] Lurie, J., Moduli Problems for Ring Spectra, Proc. Int. Congr. Math., vol. II, 1099-1125, (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi · Zbl 1244.55007
[32] Mandell, M. A.; May, J. P.; Schwede, S.; Shipley, B., Model categories of diagram spectra, Proc. Lond. Math. Soc. (3), 82, 2, 441-512, (2001) · Zbl 1017.55004
[33] May, J. P., Geometry of Iterated Loop Spaces, Lecture Notes in Math., vol. 347, (1973), Springer-Verlag: Springer-Verlag Berlin-New York
[34] Miller, H., A spectral sequence for the homology of an infinite delooping, Pacific J. Math., 79, 1, 139-155, (1978) · Zbl 0383.55007
[35] Miller, H., The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2). Ann. of Math. (2), Ann. of Math. (2), 121, 3, 605-609, (1985), correction: · Zbl 0575.55011
[36] Robinson, A.; Whitehouse, S., Operads and Γ-homology of commutative rings, Math. Proc. Cambridge Philos. Soc., 132, 2, 197-234, (2002) · Zbl 0997.18004
[37] Sussan, J., Category \(\mathcal{O}\) and \(s l(k)\) link invariants, preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.