×

Flag structures on real 3-manifolds. (English) Zbl 1453.32042

Summary: We define flag structures on a real three manifold \(M\) as the choice of two complex lines on the complexified tangent space at each point of \(M\). We suppose that the plane field defined by the complex lines is a contact plane and construct an adapted connection on an appropriate principal bundle. This includes path geometries and CR structures as special cases. We prove that the null curvature models are given by totally real submanifolds in the flag space \(\mathbf{SL}(3, \mathbb{C})/B\), where \(B\) is the subgroup of upper triangular matrices. We also define a global invariant which is analogous to the Chern-Simons secondary class invariant for three manifolds with a Riemannian structure and to the Burns-Epstein invariant in the case of CR structures. It turns out to be constant on homotopy classes of totally real immersions in flag space.

MSC:

32V05 CR structures, CR operators, and generalizations

References:

[1] Barbot, T., Flag structures on Seifert manifolds, Geom. Topol., 5, 227-266 (2001) · Zbl 1032.57037 · doi:10.2140/gt.2001.5.227
[2] Bergeron, N.; Falbel, E.; Guilloux, A., Tetrahedra of flags, volume and homology of \({\bf SL}(3)\), Geom. Topol., 18, 4, 1911-1971 (2014) · Zbl 1365.57023 · doi:10.2140/gt.2014.18.1911
[3] Biquard, O.; Herzlich, M.; Rumin, M., Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3, Ann. Sci. École Norm. Sup. (4), 40, 4, 589-631 (2007) · Zbl 1188.32010 · doi:10.1016/j.ansens.2007.06.001
[4] Borrelli, V., On totally real isotopy classes, Int. Math. Res. Not., 2, 89-109 (2002) · Zbl 1005.53050 · doi:10.1155/S1073792802105125
[5] Bryant, R.: Élie Cartan and geometric duality. Preprint (1998) · Zbl 1263.53015
[6] Bryant, R., Griffiths, P., Hsu, L.: Toward a geometry of differential equations. Geometry, topology, and physics, 1-76. In: Conference of Proceedings Lecture Notes Geom. Topology, IV. International Press, Cambridge, MA, (1995) · Zbl 0894.58004
[7] Burns, D.; Epstein, CL, A global invariant for three-dimensional CR-manifolds, Invent. Math., 92, 2, 333-348 (1988) · Zbl 0643.32006 · doi:10.1007/BF01404456
[8] Burns, D.; Shnider, S., Real Hypersurfaces in complex manifolds, Proc. Symp. Pure Math., 30, 141-168 (1977) · Zbl 0422.32016 · doi:10.1090/pspum/030.2/0450603
[9] Burns, D.; Shnider, S., Spherical hypersurfaces in complex manifolds, Invent. Math., 33, 223-246 (1976) · Zbl 0357.32012 · doi:10.1007/BF01404204
[10] Cartan, E., Sur les variétés connexion projective, Bull. Soc. Math. Fr., 52, 205-241 (1924) · JFM 50.0500.02 · doi:10.24033/bsmf.1053
[11] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl. (4), 11, 17-90 (1932) · Zbl 0005.37304 · doi:10.1007/BF02417822
[12] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa (2), 1, 333-354 (1932) · Zbl 0005.37401
[13] Cheng, JH; Lee, JM, The Burns-Epstein invariant and deformation of CR structures, Duke Math. J., 60, 1, 221-254 (1990) · Zbl 0704.53028 · doi:10.1215/S0012-7094-90-06008-9
[14] Chern, SS; Moser, J., Real hypersurfaces in complex manifolds, Acta Math., 133, 219-271 (1974) · Zbl 0302.32015 · doi:10.1007/BF02392146
[15] Deraux, M.; Falbel, E., Complex hyperbolic geometry of the figure-eight knot, Geom. Topol., 19, 1, 237-293 (2015) · Zbl 1335.32028 · doi:10.2140/gt.2015.19.237
[16] Falbel, E.; Santos Thebaldi, R., A flag structure on a cusped hyperbolic 3-manifold, Pac. J. Math., 278, 1, 51-78 (2015) · Zbl 1326.57036 · doi:10.2140/pjm.2015.278.51
[17] Forstneric, F., On totally real embeddings into \({\mathbb{C}}^n\), Expos. Math., 4, 3, 243-255 (1986) · Zbl 0597.57018
[18] Ivey, TA; Landsberg, JM, Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems. Graduate Studies in Mathematics, 61 (2003), Providence: American Mathematical Society, Providence · Zbl 1105.53001
[19] Jacobowitz, H., An Introduction to CR Structures. vol. 32, Mathematical Surveys and Monographs (1990), Providence: American Mathematical Society, Providence · Zbl 0712.32001
[20] Lees, JA, On the classification of Lagrange immersions, Duke Math. J., 43, 2, 217-224 (1976) · Zbl 0329.58006 · doi:10.1215/S0012-7094-76-04319-2
[21] Schwartz, RE, Spherical CR Geometry and Dehn Surgery. Annals of Mathematics Studies, 165 (2007), Princeton: Princeton University Press, Princeton · Zbl 1116.57016
[22] Webster, SM, Pseudo-Hermitian structures on a real hypersurface, J. Differ. Geom., 13, 1, 25-41 (1978) · Zbl 0379.53016 · doi:10.4310/jdg/1214434345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.