×

Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses. (English) Zbl 1452.62812

Summary: Long-term therapy with antiretroviral (ARV) agents in HIV-infected patients often results in failure to suppress the viral load. Imperfect adherence and drug susceptibility to prescribed antiviral drugs are important factors explaining the resurgence of virus. A better understanding of the factors responsible for the virological failure is critical for the development of new treatment strategies. In this paper, we develop a mechanism-based reparameterized differential equation model for characterizing long-term viral dynamics with ARV therapy. In this model we directly incorporate drug susceptibility and drug adherence (measured by medication event monitoring system (MEMS) and questionnaires) into a function of treatment efficacy. A Bayesian nonlinear mixed-effects modeling approach is investigated for estimating dynamic parameters by fitting the model to viral load data from an AIDS clinical trial. The effects of drug adherence interaction with drug resistance-based models are compared using (i) the sum of the squared residual (SSR) from individual subjects and (ii) the deviance information criterion (DIC), a Bayesian version of the classical deviance for model assessment, designed from complex hierarchical model settings. The results indicate that the drug adherence combined with confounding factor, drug resistance in viral dynamic modeling significantly predict virologic responses. Our study suggests that long-term reparameterized dynamic models are powerful and effective in establishing a relationship of antiviral responses with drug adherence and susceptibility.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62-08 Computational methods for problems pertaining to statistics
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Acosta, E. P.; Wu, H.; Walawander, A.; Eron, J.; Pettinelli, C.; Yu, S.; Neath, D.; Ferguson, E.; Saah, A. J.; Kuritzkes, D. R.; Gerber, J. G.; for the Adult ACTG 5055 Protocol Team, Comparison of two indinavir/ritonavir regimens in treatment-experienced HIV-infected individuals, Journal of Acquired Immune Deficiency Syndromes, 37, 1358-1366 (2004)
[2] Akaike, H., Information theory and an extension of the maximum likelihood principle, (Petrov, B. N.; Csáki, F., 2nd International Symposium on Information Theory (1973), Akadémiai Kiadó: Akadémiai Kiadó Budapest), 267-281 · Zbl 0283.62006
[3] Bangsberg, D. R.; Hecht, F. M.; Charlebois, E. D.; Zolopa, A. R.; Holodniy, M.; Sheiner, L.; Bamberger, J. D.; Chesney, M. A.; Moss, A., Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population, AIDS, 14, 357-366 (2000)
[4] Berg, A.; Meyer, R.; Yu, J., Deviance information criterion for comparing stochastic volatility models, Journal of Business & Economic Statistics, 22, 107-120 (2004)
[5] Bonhoeffer, S.; Lipsitch, M.; Levin, B. R., Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA, 94, 12106-12111 (1997)
[6] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, Bulletin of Mathematical Biology, 64, 29-64 (2002) · Zbl 1334.92227
[7] Cobelli, C.; Lepschy, A.; Jacur, G. R., Identifiability of compartmental systems and related structural properties, Mathematical Biosciences, 44, 1-18 (1979)
[8] Davidian, M.; Giltinan, D. M., Nonlinear Models for Repeated Measurement Data (1995), Chapman & Hall: Chapman & Hall London
[9] Ding, A. A.; Wu, H., A comparison study of models and fitting procedures for biphasic viral decay rates in viral dynamic models, Biometrics, 56, 16-23 (2000)
[10] Gamerman, D., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (1997), Chapman & Hall: Chapman & Hall Londan · Zbl 0881.62002
[11] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Recognition and Machine Intelligence, 6, 721-741 (1984) · Zbl 0573.62030
[12] Gelfand, A. E.; Smith, A. F.M., Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409 (1990) · Zbl 0702.62020
[13] (Gilks, W. R.; Richardson, S.; Spiegelhalter, D. J., Markov Chain Monte Carlo in Practice (1995), Chapman & Hall: Chapman & Hall Londan) · Zbl 0832.00018
[14] Haas, D. W., Therapy with efavirenz plus indinavir in patients with extensive prior nucleoside reverse-transcriptase inhibitor experience: A randomized, double-blind, placebo-controled trial, Journal of Infectious Diseases, 183, 3, 392-400 (2001)
[15] Hammer, S. M.; Vaida, F., Dual vs. single protease inhibitor therapy following antiretroviral treatment failure: A random trial, Journal of the American Medical Association, 288, 169-180 (2002)
[16] Han, C.; Chaloner, K.; Perelson, A. S., Bayesian analysis of a population HIV dynamic model, (Gatsoiquiry, C.; Kass, R. E.; Carriquiry, A.; Gelman, A.; Higdon, D.; Pauler, D. K.; Verdinellinis, I., Case Studies in Bayesian Statistics, vol. 6 (2002), Springer-Verlag: Springer-Verlag New York), 223-237
[17] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995)
[18] Huang, Y.; Rosenkranz, S. L.; Wu, H., Modeling HIV dynamics and antiviral responses with consideration of time-varying drug exposures, sensitivities and adherence, Mathematical Biosciences, 184, 165-186 (2003) · Zbl 1030.92016
[19] Huang, Y.; Wu, H., A Bayesian approach for estimating antiviral efficacy in HIV dynamic model, Journal of Applied Statistics, 33, 155-174 (2005) · Zbl 1106.62121
[20] Huang, Y.; Liu, D.; Wu, H., Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system, Biometrics, 62, 413-423 (2006) · Zbl 1097.62128
[21] Ickovics, J. R.; Meisler, A. W., Adherence in AIDS clinical trial: A framework for clinical research and clinical care, Journal of Clinical Epidemiology, 50, 385-391 (1997)
[22] IMSL MATH/LIBRARY, FORTRAN Subroutines for Mathematical Applications, vol. 2 (1994), Visual Numerics, Inc.: Visual Numerics, Inc. Houston
[23] Jackson, R. C., A pharmacokinetic-pharmacodynamic model of chemotherapy of human immunodeficiency virus infection that relates development of drug resistance to treatment intensity, Journal of Pharmacokinetics and Pharmacodynamics, 25, 713-730 (1997)
[24] Labbé, L.; Verttoa, D., A nonlinear mixed effect dynamic model incorporating prior exposure and adherence to treatment to describe long-term therapy outcome in HIV-patients, Journal of Pharmacokinetics and Pharmacodynamics, 33, 519-542 (2006)
[25] Molla, A.; Korneyeva, M., Ordered accumulation of mutations in HIV protease confers resistance to ritonavir, Nature Medicine, 2, 760-766 (1996)
[26] Nowak, M. A.; Bonhoeffer, S., HIV results in the frame, Nature, 375, 193 (1995)
[27] Nowak, M. A.; May, R. M., Virus Dynamics: Mathematical Principles of Immunology and Virology (2000), Oxford University Press: Oxford University Press Oxford · Zbl 1101.92028
[28] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996)
[29] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188-191 (1997)
[30] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41, 3-44 (1999) · Zbl 1078.92502
[31] Pfister, M.; Labbe, L.; Hammer, S. M.; Mellors, J.; Bennett, K. K.; Rosenkranz, S. L.; Sheiner, L. B.; the AIDS Clinical Trial Group Protocol 398 Investigators, Population pharmacokinetics and pharmacodynamics of Efavirenz, Nelfinavir, and Indinavir: Adult AIDS Clinical Trial Group Study 398, Antimicrobial Agents and Chemoterapy, 47, 130-137 (2003)
[32] Pinherio, J.; Bates, D. M., Mixed-effects Models in S and S-plus (2000), Springer: Springer New York · Zbl 0953.62065
[33] SAS Institute Inc, SAS/STAT User’s Guide, Version 8 (2000), SAS Publishing
[34] Sheiner, L. B., Modeling pharmacodynamics: Parametric and nonparametric approaches, (Rowland, M.; etal., Variability in Drug Therapy: Description, Estimation, and Control (1985), Raven Press: Raven Press New York), 139-152
[35] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; van der Linde, A., Bayesian measures of model complexity and fit, Journal of the Royal Statistics Society, Series B, 64, 583-639 (2002) · Zbl 1067.62010
[36] Spiegelhalter, D. J.; Abrams, K. R.; Myles, J. P., Bayesian Approaches to Clinical Trials and Health Care Evaluation (2004), Wiley: Wiley NJ
[37] Stafford, M. A., Modeling plasma virus concentration during primary HIV infection, Journal of Theoretical Biology, 203, 285-301 (2000)
[38] Schwarz, G., Estimating the dimension of a model, Annals of Statistics, 6, 461-464 (1978) · Zbl 0379.62005
[39] Verotta, D., Models and estimation methods for clinical HIV-1 data, Journal of Computational and Applied Mathematics, 184, 275-300 (2005) · Zbl 1072.92029
[40] Vrijens, B.; Goetghebeur, E., Comparing compliance patterns between randomized treatments, Controlled Clinical Trials, 18, 187-203 (1997)
[41] Vrijens, B.; Goetghebeur, E.; de Klerk, E.; Rode, R.; Mayer, S.; Urquhart, J., Modeling the association between adherence and viral load in HIV-infected patients, Statistics in Medicine, 24, 2719-2731 (2005)
[42] Wahl, L. M.; Nowak, M. A., Adherence and resistance: Predictions for therapy outcome, Proceedings of the Royal Society, Biological, 267, 835-843 (2000)
[43] Wainberg, M. A., Effectiveness of 3TC in HIV clinical trials may be due in part to the M184V substitution in 3TC-resistant HIV-1 reverse transcriptase, AIDS, 10, suppl, S3-S10 (1996)
[44] Wakefield, J. C.; Smith, A. F.M.; Racine-Poon, A.; Gelfand, A. E., Bayesian analysis of linear and non-linear population models using the Gibbs sampler, Applied Statistics, 43, 201-221 (1994) · Zbl 0825.62410
[45] Wakefield, J. C., The Bayesian analysis to population pharmacokinetic models, Journal of the American Statistical Association, 91, 62-75 (1996) · Zbl 0925.62474
[46] Wu, H.; Ding, A. A.; de Gruttola, V., Estimation of HIV dynamic parameters, Statistics in Medicine, 17, 2463-2485 (1998)
[47] Wu, H.; Ding, A. A., Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from AIDS clinical trials, Biometrics, 55, 410-418 (1999) · Zbl 1059.62735
[48] Wu, H.; Huang, Y., Modeling antiretroviral response: Effects of drug potency, pharmacokinetics, adherence and drug resistance, JAIDS, 39, 272-283 (2005)
[49] Zhu, L.; Carlin, B. P., Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion, Statistics in Medicine, 19, 2265-2278 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.