×

Empirical frequency band analysis of nonstationary time series. (English) Zbl 1452.62689

Summary: The time-varying power spectrum of a time series process is a bivariate function that quantifies the magnitude of oscillations at different frequencies and times. To obtain low-dimensional, parsimonious measures from this functional parameter, applied researchers consider collapsed measures of power within local bands that partition the frequency space. Frequency bands commonly used in the scientific literature were historically derived, but they are not guaranteed to be optimal or justified for adequately summarizing information from a given time series process under current study. There is a dearth of methods for empirically constructing statistically optimal bands for a given signal. The goal of this article is to provide a standardized, unifying approach for deriving and analyzing customized frequency bands. A consistent, frequency-domain, iterative cumulative sum based scanning procedure is formulated to identify frequency bands that best preserve nonstationary information. A formal hypothesis testing procedure is also developed to test which, if any, frequency bands remain stationary. The proposed method is used to analyze heart rate variability of a patient during sleep and uncovers a refined partition of frequency bands that best summarize the time-varying power spectrum.

MSC:

62M15 Inference from stochastic processes and spectral analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

FreSpeD; sapa

References:

[1] Adak, S., “Time-Dependent Spectral Analysis of Nonstationary Time Series,”, Journal of the American Statistical Association, 93, 1488-1501 (1998) · Zbl 1064.62565 · doi:10.1080/01621459.1998.10473808
[2] Billman, G., “Heart Rate Variability—A Historical Perspective,”, Frontiers in Physiology, 2, 86 (2011) · doi:10.3389/fphys.2011.00086
[3] Cabeza-Ruiz, R.; García-Massó, X.; Centeno-Prada, R.; Beas-Jiménez, J.; Colado, J.; González, L.-M., “Time and Frequency Analysis of the Static Balance in Young Adults With Down Syndrome,”, Gait & Posture, 33, 23-28 (2011) · doi:10.1016/j.gaitpost.2010.09.014
[4] Causeur, D.; Kloareg, M.; Friguet, C., “Control of the FWER in Multiple Testing Under Dependence,”, Communications in Statistics—Theory and Methods, 38, 2733-2747 (2009) · Zbl 1175.62057 · doi:10.1080/03610910902936281
[5] Cohen, D.; Pollak, L.; Eldar, Y. C., Carrier Frequency and Bandwidth Estimation of Cyclostationary Multiband Signals, 3716-3720 (2016)
[6] Dahlhaus, R., “Fitting Time Series Models to Nonstationary Processes,”, The Annals of Statistics, 25, 1-37 (1997) · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[7] Daubechies, I.; Lu, J.; Wu, H.-T., “Synchrosqueezed Wavelet Transforms: An Empirical Mode Decomposition-Like Tool,”, Applied and Computational Harmonic Analysis, 30, 243-261 (2011) · Zbl 1213.42133 · doi:10.1016/j.acha.2010.08.002
[8] Daubechies, I.; Wang, Y. G.; Wu, H.-T., “ConceFT: Concentration of Frequency and Time via a Multitapered Synchrosqueezed Transform,”, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 374, 20150193 (2016) · Zbl 1353.42031 · doi:10.1098/rsta.2015.0193
[9] Davis, R. A.; Lee, T. C. M.; Rodriguez-Yam, G. A., “Structural Break Estimation for Nonstationary Time Series Models,”, Journal of the American Statistical Association, 101, 223-239 (2006) · Zbl 1118.62359 · doi:10.1198/016214505000000745
[10] Doppelmayr, M.; Klimesch, W.; Pachinger, T.; Ripper, B., “Individual Differences in Brain Dynamics: Important Implications for the Calculation of Event-Related Band Power,”, Biological Cybernetics, 79, 49-57 (1998) · doi:10.1007/s004220050457
[11] Efron, B., “Correlation and Large-Scale Simultaneous Significance Testing,”, Journal of the American Statistical Association, 102, 93-103 (2007) · Zbl 1284.62340 · doi:10.1198/016214506000001211
[12] Flandrin, P., Time-Frequency/Time-Scale Analysis (1998), San Diego, CA: Academic Press, San Diego, CA
[13] Gardner, W. A.; Napolitano, A.; Paura, L., “Cyclostationarity: Half a Century of Research,”, Signal Processing, 86, 639-697 (2006) · Zbl 1163.94338 · doi:10.1016/j.sigpro.2005.06.016
[14] Guo, W.; Dai, M.; Ombao, H. C.; von Sachs, R., “Smoothing Spline ANOVA for Time-Dependent Spectral Analysis,”, Journal of the American Statistical Association, 98, 643-652 (2003) · Zbl 1040.62082 · doi:10.1198/016214503000000549
[15] Hall, M.; Vasko, R.; Buysse, D.; Ombao, H.; Chen, Q.; Cashmere, J. D.; Kupfer, D.; Thayer, J. F., “Acute Stress Affects Heart Rate Variability During Sleep,”, Psychosomatic Medicine, 66, 56-62 (2004) · doi:10.1097/01.PSY.0000106884.58744.09
[16] Hochberg, Y., “A Sharper Bonferroni Procedure for Multiple Tests of Significance,”, Biometrika, 75, 800-802 (1988) · Zbl 0661.62067 · doi:10.1093/biomet/75.4.800
[17] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis,”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454, 903-995 (1998) · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[18] Iber, C.; Ancoli-Isreal, S.; Chesson, A.; Quan, S. F., The AASM Manual for the Scoring of Sleep and Associated Events (2007), Westchester, IL: American Academy of Sleep Medicine, Westchester, IL
[19] Kirch, C.; Muhsal, B.; Ombao, H., “Detection of Changes in Multivariate Time Series With Application to EEG Data,”, Journal of the American Statistical Association, 110, 1197-1216 (2015) · Zbl 1378.62072 · doi:10.1080/01621459.2014.957545
[20] Klimesch, W., “EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis,”, Brain Research Reviews, 29, 169-195 (1999) · doi:10.1016/S0165-0173(98)00056-3
[21] Klimesch, W.; Doppelmayr, M.; Russegger, H.; Pachinger, T.; Schwaiger, J., “Induced Alpha Band Power Changes in the Human EEG and Attention,”, Neuroscience Letters, 244, 73-76 (1998) · doi:10.1016/S0304-3940(98)00122-0
[22] Malik, M.; Bigger, J. T.; Camm, A. J.; Kleiger, R. E.; Malliani, A.; Moss, A. J.; Schwartz, P. J., “Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use,”, European Heart Journal, 17, 354-381 (1996) · doi:10.1093/oxfordjournals.eurheartj.a014868
[23] Moore, S. T.; MacDougall, H. G.; Ondo, W. G., “Ambulatory Monitoring of Freezing of Gait in Parkinson’s Disease,”, Journal of Neuroscience Methods, 167, 340-348 (2008) · doi:10.1016/j.jneumeth.2007.08.023
[24] Neumann, M. H.; von Sachs, R., “Wavelet Thresholding in Anisotropic Function Classes and Application to Adaptive Estimation of Evolutionary Spectra,”, The Annals of Statistics, 25, 38-76 (1997) · Zbl 0871.62081 · doi:10.1214/aos/1034276621
[25] Ombao, H. C.; Raz, J. A.; von Sachs, R.; Malow, B. A., “Automatic Statistical Analysis of Bivariate Nonstationary Time Series. In Memory of Jonathan A. Raz, Journal of the American Statistical Association, 96, 543-560 (2001) · Zbl 1018.62080 · doi:10.1198/016214501753168244
[26] Ombao, H.; von Sachs, R.; Guo, W., “SLEX Analysis of Multivariate Nonstationary Time Series,”, Journal of the American Statistical Association, 100, 519-531 (2005) · Zbl 1117.62407 · doi:10.1198/016214504000001448
[27] Percival, D. B.; Walden, A. T., Spectral Analysis for Physical Applications (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0796.62077
[28] Preuss, P.; Puchstein, R.; Dette, H., “Detection of Multiple Structural Breaks in Multivariate Time Series,”, Journal of the American Statistical Association, 110, 654-668 (2015) · Zbl 1373.62454 · doi:10.1080/01621459.2014.920613
[29] Priestley, M. B., Evolutionary Spectra and Non-Stationary Processes,”, Journal of the Royal Statistical Society, Series B, 28, 228-240 (1965) · Zbl 0237.62058
[30] Rand, W. M., “Objective Criteria for the Evaluation of Clustering Methods,”, Journal of the American Statistical Association, 66, 846-850 (1971) · doi:10.1080/01621459.1971.10482356
[31] Riedel, K. S.; Sidorenko, A., “Minimum Bias Multiple Taper Spectral Estimation,”, IEEE Transactions on Signal Processing, 43, 188-195 (1995) · doi:10.1109/78.365298
[32] Satterthwaite, F. E., “An Approximate Distribution of Estimates of Variance Components,”, Biometrics Bulletin, 2, 110-114 (1946) · doi:10.2307/3002019
[33] Schröder, A. L.; Ombao, H., “FreSpeD: Frequency-Specific Change-Point Detection in Epileptic Seizure Multi-Channel EEG Data,”, Journal of the American Statistical Association, 114, 115-128 (2019) · Zbl 1478.62276 · doi:10.1080/01621459.2018.1476238
[34] Shinar, Z.; Akselrod, S.; Dagan, Y.; Baharav, A., “Autonomic Changes During Wake-Sleep Transition: A Heart Rate Variability Based Approach,”, Autonomic Neuroscience, 130, 17-27 (2006) · doi:10.1016/j.autneu.2006.04.006
[35] Storey, J. D., “The Optimal Discovery Procedure: A New Approach to Simultaneous Significance Testing,”, Journal of the Royal Statistical Society, Series B, 69, 347-368 (2007) · Zbl 07555356 · doi:10.1111/j.1467-9868.2007.005592.x
[36] Thomson, D. J., “Spectrum Estimation and Harmonic Analysis,”, Proceedings of the IEEE, 70, 1055-1096 (1982) · doi:10.1109/PROC.1982.12433
[37] Tiganj, Z.; Mboup, M.; Chevallier, S.; Kalunga, E., Online Frequency Band Estimation and Change-Point Detection, 1-6 (2012)
[38] Trinder, J.; Whitworth, F.; Kay, A.; Wilkin, P., “Respiratory Instability During Sleep Onset,”, Journal of Applied Physiology, 73, 2462-2469 (1992) · doi:10.1152/jappl.1992.73.6.2462
[39] Walden, A. T.; McCoy, E. J.; Percival, D. B., “The Effective Bandwidth of a Multitaper Spectral Estimator,”, Biometrika, 82, 201-214 (1995) · Zbl 0823.62076 · doi:10.1093/biomet/82.1.201
[40] Welch, B. L., “The Significance of the Difference Between Two Means When the Population Variances Are Unequal,”, Biometrika, 29, 350-362 (1938) · Zbl 0018.22602 · doi:10.1093/biomet/29.3-4.350
[41] Wu, Z.; Huang, N. E., “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method,”, Advances in Adaptive Data Analysis, 1, 1-41 (2009) · doi:10.1142/S1793536909000047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.