×

Constants of motion of the harmonic oscillator. (English) Zbl 1451.81279

Summary: We prove that Weyl quantization preserves constant of motion of the Harmonic Oscillator. We also prove that if \(f\) is a classical constant of motion and \(\mathfrak{Op}(f)\) is the corresponding operator, then \(\mathfrak{Op}(f)\) maps the Schwartz class into itself and it defines an essentially self-adjoint operator on \(L^2(\mathbb{R}^n)\). As a consequence, we obtain detailed spectral information of \(\mathfrak{Op}(f)\). A complete characterization of the classical constants of motion of the Harmonic Oscillator is given and we also show that they form an algebra with the integral Moyal star product. We give some interesting examples of constants of motion and we analyze Weinstein-Guillemin average method within our framework.

MSC:

81S08 Canonical quantization
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
53D55 Deformation quantization, star products
34B20 Weyl theory and its generalizations for ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations

References:

[1] Abraham, R.; Marsden, E., Foundations of Mechanics (1978), Redwood: Benjamin/Cummings Publishing Co, Redwood · Zbl 0393.70001
[2] Ali, ST; Engliš, M., Quantization methods: a guide for physicists and analysts, Rev. Math. Phys., 17, 4, 391-490 (2005) · Zbl 1075.81038
[3] Belmonte, F.: Canonical quantization of constants of motion. Rev. Math. Phys. 32(2050030) (2020) · Zbl 1453.81041
[4] Birman, M.; Solomyak, M., Spectral Theory of Selfadjoint Operators in Hilbert Spaces. Translated from the 1980 Rusian Original by S. Khrushchëv and V. Peller. Mathematics and Its Applications (Soviet Series) (1987), Dordrecht: Reidel Publishing Co., Dordrecht · Zbl 0744.47017
[5] Dixmier, J.: Von Neumann Algebras. Translated by F. Jellett from Les algèbres d’operators dans l’espace hilbertien(algèbres de Von Neumann, vol. 27. North-Holland mathematical library (1969) · Zbl 0175.43801
[6] Doll, M., Zelditch, S.: Schrödinger trace invariants for homogeneous perturbations of the harmonic oscillator. J. Spectr. Theory to appear (2018)
[7] Agorram, F., Benkhadra, A., El Hamyani, A., Ghanmi, A.: Complex hermite functions as Fourier Wigner transform. Integral Transforms and Special Functions 27(2) (2016) · Zbl 1347.33018
[8] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys., 111, 1, 61-110 (1978) · Zbl 0377.53024
[9] Federer, H., Curvature measures, Trans. Amer. Math. Soc., 93, 418-491 (1959) · Zbl 0089.38402
[10] Federer, H., Geometric Measure Theory Die Grundlehren Der Mathematischen Wissenschaften Band, vol. 153 (1969), Berlin: Springer, Berlin · Zbl 0176.00801
[11] Folland, GB, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122 (1989), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0682.43001
[12] Groenewold, H., On the principles of elementary quantum mechanics, Physica, 12, 405-460 (1946) · Zbl 0060.45002
[13] Guillemin, V., Band asymptotics in two dimensions, Adv. Math, 42, 3, 248-282 (1981) · Zbl 0478.58029
[14] Hörmander, L.: Seudo-differential operators and hypoelliptic equations. Singular integrals (proc. Sympos. Pure math. Vol. X, Chicago, Ill., 1966), pp. 138-183 (1967) · Zbl 0167.09603
[15] Igusa, J.: Theta functions. Springer (1972) · Zbl 0251.14016
[16] Kontsévich, M., Deformation quantization of Poisson manifolds, Let. Math. Phys., 66, 3, 157-216 (2003) · Zbl 1058.53065
[17] Berger, M.; Gauduchon, P.; Mazet, E., Le Spectre D’une Variété Riemanniene. Notes in Math, vol. 194 (1971), Berlin: Springer, Berlin · Zbl 0223.53034
[18] Doll, M.; Gannot, O.; Wunsch, J., Refined Weyl law for homogeneous perturbations of the harmonic oscillator, Comm. Math. Phys., 362, 1, 269-294 (2018) · Zbl 1396.58024
[19] Marsden, J., Lectures on Mechanics, LMS Lecture Notes, vol. 174 (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0744.70004
[20] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121-130 (1974) · Zbl 0327.58005
[21] Maurin, K., General Eigenfunction Expansions and Unitary Representations of Topological Groups. Monografie Matematyczne, vol. 48 (1968), Warsaw: PWN-Polish Scientific Publishers, Warsaw · Zbl 0185.39001
[22] Meyer, K.: Symmetries and integrals in mechanics. Dynamical Systems M. Peixoto, Academic Press, 259-273 (1973)
[23] Estrada, R.; Gracia-Bondía, JM; Várilly, J., On asymptotic expansions of twisted products, J. Math. Phys., 30, 12, 2789-2796 (1989) · Zbl 0691.46056
[24] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, vol. I (1980), San Diego: Academic Press, Inc., San Diego · Zbl 0459.46001
[25] Shubin, MA, Pseudodifferential Operators and Spectral Theory Translated by S. I. Andersson,. Springer Series in Soviet Mathematics (1987), Berlin: Springer, Berlin · Zbl 0616.47040
[26] Simon, L.: Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University (1983) · Zbl 0546.49019
[27] Taylor, ME, Pseudodifferential Operator Princeton Mathematical Series, vol. 34 (1981), Princeton, N.J: Princeton University Press, Princeton, N.J · Zbl 0453.47026
[28] Weinstein, A., Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44, 4, 883-892 (1977) · Zbl 0385.58013
[29] Weyl, H., Quantenmechanik und Gruppentheorie, Z. Physik, 46, 1-46 (1927) · JFM 53.0848.02
[30] Zworski, M., Semiclassical Analysis Graduate Studies in Mathematics, vol. 138 (2012), Providence, RI: AMS, Providence, RI · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.