×

Local strong solutions to the nonhomogeneous Bénard system with nonnegative density. (English) Zbl 1451.35147

Summary: We study the Cauchy problem of the nonhomogeneous Bénard system in the whole two-dimensional (2D) space, where the density is allowed to vanish initially. We prove that there exists a unique local strong solution. To compensate for the lack of integrability of the velocity in the whole space, a careful space weight is imposed on the initial density, which cannot decay too slowly in the far field.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
35D35 Strong solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math. 12 (1959), 623-727. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II”, Comm. Pure Appl. Math. 17 (1964), 35-92. · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3] C. Amrouche and V. Girault, “Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension”, Czechoslovak Math. J. 44(119):1 (1994), 109-140. · Zbl 0823.35140 · doi:10.21136/CMJ.1994.128452
[4] Y. Cho and H. Kim, “Existence result for heat-conducting viscous incompressible fluids with vacuum”, J. Korean Math. Soc. 45:3 (2008), 645-681. · Zbl 1144.35307 · doi:10.4134/JKMS.2008.45.3.645
[5] H. J. Choe and H. Kim, “Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids”, Comm. Partial Differential Equations 28:5-6 (2003), 1183-1201. · Zbl 1024.76010 · doi:10.1081/PDE-120021191
[6] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New York, 1969. · Zbl 0224.35002
[7] B. Guo, B. Xie, and L. Zeng, “Exponential decay of Bénard convection problem with surface tension”, J. Differential Equations 267:4 (2019), 2261-2283. · Zbl 1457.76147 · doi:10.1016/j.jde.2019.03.017
[8] J. Li and Z. Liang, “On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum”, J. Math. Pures Appl. \((9) 102\):4 (2014), 640-671. · Zbl 1317.35177 · doi:10.1016/j.matpur.2014.02.001
[9] P.-L. Lions, Mathematical topics in fluid mechanics, I: incompressible models, Oxford Lecture Series in Mathematics and its Applications 3, Oxford Univ. Press, 1996. · Zbl 0866.76002
[10] P. H. Rabinowitz, “Existence and nonuniqueness of rectangular solutions of the Bénard problem”, Arch. Rational Mech. Anal. 29 (1968), 32-57. · Zbl 0164.28704 · doi:10.1007/BF00256457
[11] G. Wu and L. Xue, “Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich”s type data”, J. Differential Equations 253:1 (2012), 100-125. · Zbl 1305.35119 · doi:10.1016/j.jde.2012.02.025
[12] Z. Ye, “Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation”, Nonlinear Anal. 156 (2017), 111-143. · Zbl 1367.35135 · doi:10.1016/j.na.2017.02.014
[13] Q. Zhang, “Global well-posedness for the \(2\frac 12\rm D\) Bénard system with partial viscosity terms”, Appl. Math. Comput. 283 (2016), 282-289. · Zbl 1410.35149 · doi:10.1016/j.amc.2016.02.043
[14] R. · Zbl 1426.35193 · doi:10.1016/j.amc.2017.10.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.