×

The \(A_{\text{inf}}\)-cohomology in the semistable case. (English) Zbl 1451.14077

The authors extend the construction of \(A_{\mathrm{inf}}\)-cohomology of [B. Bhatt et al., Publ. Math., Inst. Hautes Étud. Sci. 128, 219–397 (2018; Zbl 1446.14011)] to the case of semistable formal schemes. Let \(K\) be a discretely valued field of characteristic \(0\) with perfect residue field \(k\) of characteristic \(p>0\), denote the completed algebraic closure \(\widehat{\overline{K}}\) by \(C\). For a proper semistable formal scheme \(\mathfrak{X}\) over \(\mathcal{O}_C\) the authors construct a perfect complex \(\mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\) of \(A_{\mathrm{inf}}\)-modules such that its specializations are related to classical cohomology theories by \[ \mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\otimes^{\mathbb{L}}_{A_{\mathrm{inf}}}W(C^{\flat})\simeq \mathrm{R}\Gamma_{\mathrm{et}}(\mathfrak{X}^{\mathrm{ad}}_C,\mathbb{Z}_p)\otimes^{\mathbb{L}}_{\mathbb{Z}_p}W(C^{\flat}) \tag{1} \] \[ \mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\otimes^{\mathbb{L}}_{A_{\mathrm{inf}},\theta}\mathcal{O}_C\simeq \mathrm{R}\Gamma_{\log\mathrm{dR}}(\mathfrak{X}/\mathcal{O}_C) \tag{2} \] \[ \mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\otimes^{\mathbb{L}}_{A_{\mathrm{inf}}}A_{\mathrm{cris}}\simeq \mathrm{R}\Gamma_{\log\mathrm{cris}}(\mathfrak{X}_{\mathcal{O}_C/p}/A_{\mathrm{cris}}) \tag{3} \]
When \(\mathfrak{X}\) appears as scalar extension of a semistable formal scheme \(\mathcal{X}\) over \(\mathcal{O}_K\) the object \(\mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\) gets equipped with the action of the Galois group \(\mathrm{Gal}(\overline{K}/K)\) and all of the comparison isomorphisms are compatible with Galois action. The authors deduce from this the semistable comparison isomorphism \[H^i_{\mathrm{et}}(\mathcal{X}_{\overline{K}},\mathbb{Z}_p)\otimes_{\mathbb{Z}_p}B_{\mathrm{st}}\simeq H^i_{\log\mathrm{cris}}(\mathcal{X}_k/W(k))\otimes_{W(k)}B_{\mathrm{st}}\] It was previously known in the case when \(\mathcal{X}\) is algebraizable by the works of Tsuji, Faltings, Bhatt and Beilinson. This comparison isomorphism appears as a formal consequence of (1) and (3) together with the observation which goes back to Faltings (end of Section 4 in [G. Faltings, in: Cohomologies \(p\)-adiques et applications arithmétiques (II). Paris: Société Mathématique de France. 185–270 (2002; Zbl 1027.14011)]) that there is a Galois-equivariant isomorphism (Proposition 9.2) \[ \mathrm{R}\Gamma_{\log\mathrm{cris}}(\mathcal{X}_{\mathcal{O}_{\overline{K}}/p}/A_{\mathrm{cris}})\otimes_{A_{\mathrm{cris}}}B_{\mathrm{st}}^+\simeq H^i_{\log\mathrm{cris}}(\mathcal{X}_k/W(k))\otimes_{W(k)}B_{\mathrm{st}}^+. \]
For any smooth proper variety \(X\) over \(K\) theory of Breuil-Kisin-Fargues modules provides a functorial \(\mathcal{O}_K\)-lattice inside the \(K\)-vector space \(H^i_{\mathrm{dR}}(X/K)\). The authors use the constructed \(A_{\mathrm{inf}}\)-cohomology theory to prove (Theorem 8.7) that this lattice coincides (under a certain torsion-freeness assumption on the de Rham cohomology) with the lattice \(H^i_{\log\mathrm{dR}}(\mathcal{X}/\mathcal{O}_K)\) provided by any semi-stable integral model \(\mathcal{X}\) of \(X\). In particular, any two models with torsion-free de Rham cohomology give rise to the same lattice in \(H^i_{\mathrm{dR}}(X/K)\).
The construction of \(\mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\) is essentially the same as the one given in the smooth case by [B. Bhatt et al., Publ. Math., Inst. Hautes Étud. Sci. 128, 219–397 (2018; Zbl 1446.14011)]. \(\mathrm{R}\Gamma_{A_{\mathrm{inf}}}(\mathfrak{X})\) is the derived global sections of the complex of sheaves on \(\mathfrak{X}_{\mathrm{et}}\) defined as \[A\Omega_{\mathfrak{X}}=L\mathrm{et}a_{\mu}R\nu_*\mathbb{A}_{\mathrm{inf}}(\widehat{\mathcal{O}}^+_{\mathfrak{X}_C^{\mathrm{ad}}})\] Here \(\nu:(\mathfrak{X}_C^{\mathrm{ad}})_{\mathrm{proet}}\to \mathfrak{X}_{\mathrm{et}}\) is the canonical morphism from the pro-étale site of the generic fiber and \(L\mathrm{et}a_{\mu}\) denotes the decalage functor with respect to the element \(\mu=[\varepsilon]-1\in A_{\mathrm{inf}}\). Authors are taking the pushforward to the étale site \(\mathfrak{X}_{\mathrm{et}}\) rather than the Zariski site \(\mathfrak{X}_{\mathrm{Zar}}\) as [B. Bhatt et al., Publ. Math., Inst. Hautes Étud. Sci. 128, 219–397 (2018; Zbl 1446.14011)] do because a semistable scheme in general admits standard coordinate charts only étale locally.
As compared to [B. Bhatt et al., Publ. Math., Inst. Hautes Étud. Sci. 128, 219–397 (2018; Zbl 1446.14011)], the authors have to overcome several additional difficulties. First, when constructing the de Rham comparison isomorphism (2) the key is the identification \[H^1(A\Omega_{\mathfrak{X}}\otimes^{\mathbb{L}}_{A_{\mathrm{inf}},\theta\circ\varphi^{-1}}\mathcal{O}_C)\simeq\Omega^{1,\log}_{\mathfrak{X}/\mathcal{O}_C}\{-1\}\] where \(\Omega^{1,\log}_{\mathfrak{X}/\mathcal{O}_C}\) is the sheaf of differential forms with logarithmic poles along the special fiber. As in [B. Bhatt et al., Publ. Math., Inst. Hautes Étud. Sci. 128, 219–397 (2018; Zbl 1446.14011)] a map from the sheaf of regular differential forms \(\Omega^1_{\mathfrak{X}/\mathcal{O}_C}\to H^1(A\Omega_{\mathfrak{X}}\otimes^{\mathbb{L}}_{A_{\mathrm{inf}},\theta\circ\varphi^{-1}}\mathcal{O}_C)\) can be constructed using the cotangent complex on the pro-étale site, and the authors then need to check (Theorem 4.11) that this map extends to logarithmic forms.
The other issue that comes up in the course of the proof of (3) is that the standard pro-étale perfectoid cover of the generic fiber of the semi-stable coordinate chart is not flat on the integral level. As an example, the map \(\mathcal{O}_C\langle x,y\rangle/(xy-p)\to \mathcal{O}_C\langle x^{1/p^{\mathrm{inf}ty}},y^{1/p^{\mathrm{inf}ty}}\rangle/(x^{1/p^n}y^{1/p^n}-p^{1/p^n}\mid n\in\mathbb{N})\) is not flat. In particular, the technique of quasi-syntomic descent is not available to the authors and they instead perform a careful explicit analysis of both sides of the comparison isomorphism over local coordinate charts.

MSC:

14G20 Local ground fields in algebraic geometry
14G22 Rigid analytic geometry
14F20 Étale and other Grothendieck topologies and (co)homologies
14F30 \(p\)-adic cohomology, crystalline cohomology
14F40 de Rham cohomology and algebraic geometry

References:

[1] A. A.Beilinson, J.Bernstein and P.Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5-171 (French); MR 751966 (86g:32015). · Zbl 0536.14011
[2] O.Brinon and B.Conrad, CMI summer school notes on<![CDATA \([p]]\)>-adic Hodge theory. Available at http://math.stanford.edu/∼conrad/papers/notes.pdf, version of June 24, 2009.
[3] A.Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc.25 (2012), 715-738, doi:10.1090/S0894-0347-2012-00729-2; MR 2904571. · Zbl 1247.14018
[4] A.Beilinson, On the crystalline period map, Camb. J. Math.1 (2013), 1-51; MR 3272051. · Zbl 1351.14011
[5] A.Beilinson, On the crystalline period map, Preprint (2013), arXiv:1111.3316v4. · Zbl 1351.14011
[6] B.Bhatt, <![CDATA \([p]]\)>-adic derived de Rham cohomology, Preprint (2012), arXiv:1204.6560.
[7] B.Bhatt, Specializing varieties and their cohomology from characteristic 0 to characteristic p, in Algebraic geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol. 97 (American Mathematical Society, Providence, RI, 2018), 43-88; MR 3821167. · Zbl 1451.14066
[8] S.Bosch, W.Lütkebohmert and M.Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21 (Springer, Berlin, 1990); MR 1045822 (91i:14034). · Zbl 0705.14001
[9] B.Bhatt, M.Morrow and P.Scholze, Integral<![CDATA \([p]]\)>-adic Hodge theory, Preprint (2018) arXiv:1602.03148.
[10] N.Bourbaki, Éléments de mathématique. Algèbre commutative, ch. I-VII (Hermann, 1961, 1964, 1965); ch. VIII-X (Springer, 2006, 2007) (French).
[11] O.Brinon, Représentations cristallines dans le cas d’un corps résiduel imparfait, Ann. Inst. Fourier (Grenoble)56 (2006), 919-999 (French, with English and French summaries); MR 2266883. · Zbl 1168.11051
[12] B.Bhatt and P.Scholze, The pro-étale topology for schemes, Astérisque369 (2015), 99-201 (English, with English and French summaries); MR 3379634. · Zbl 1351.19001
[13] P.Colmez and W.Nizioł, Syntomic complexes and p-adic nearby cycles, Invent. Math.208 (2017), 1-108; MR 3621832. · Zbl 1395.14013
[14] B.Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble)49 (1999), 473-541 (English, with English and French summaries); MR 1697371. · Zbl 0928.32011
[15] A.Grothendieck and J.Dieudonné, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math.4 (1960), 228; MR 0217083 (36 #177a). · Zbl 0118.36206
[16] A.Grothendieck and J.Dieudonné, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math.11 (1961), 167; MR 0217085 (36 #177c). · Zbl 0203.23301
[17] A.Grothendieck and J.Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math.24 (1965), 231 (French); MR 0199181 (33 #7330). · Zbl 0135.39701
[18] G.Faltings, Almost étale extensions, in Cohomologies p-adiques et applications arithmétiques, II, Astérisque, vol. 279 (Société Mathématique de France, Paris, 2002), 185-270; MR 1922831. · Zbl 1027.14011
[19] K.Fujiwara and F.Kato, Foundations of rigid geometry. I, EMS Monographs in Mathematics (European Mathematical Society, Zürich, 2018); MR 3752648. · Zbl 1400.14001
[20] J.-M.Fontaine, Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math.65 (1982), 379-409 (French); MR 643559. · Zbl 0502.14015
[21] J.-M.Fontaine, Le corps des periodes p-adiques. With an appendix by Pierre Colmez, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223 (Société Mathématique de France, Paris, 1994), 59-111 (French); MR 1293971. · Zbl 0940.14012
[22] O.Gabber and L.Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800 (Springer, Berlin, 2003); MR 2004652. · Zbl 1045.13002
[23] R.Huber, Continuous valuations, Math. Z.212 (1993), 455-477; MR 1207303. · Zbl 0788.13010
[24] R.Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z.217 (1994), 513-551; MR 1306024. · Zbl 0814.14024
[25] R.Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996); MR 1734903. · Zbl 0868.14010
[26] L.Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239 (Springer, Berlin-New York, 1971) (French); MR 0491680. · Zbl 0224.13014
[27] K.Kato, Logarithmic structures of Fontaine-Illusie, in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (Johns Hopkins University Press, Baltimore, MD, 1989), 191-224; MR 1463703 (99b:14020). · Zbl 0776.14004
[28] K.Kato, Semi-stable reduction and p-adic étale cohomology, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223 (Société Mathématique de France, Paris, 1994), 269-293; MR 1293975. · Zbl 0847.14009
[29] K.Kato, Toric singularities, Amer. J. Math.116 (1994), 1073-1099; MR 1296725. · Zbl 0832.14002
[30] T.Liu, Compatibility of Kisin modules for different uniformizers, J. reine angew.740 (2018), 1-24. · Zbl 1456.11094
[31] M.Morrow, Notes on the<![CDATA \([\mathbb{A}_{\text{inf}}]]\)>-cohomology of integral<![CDATA \([p]]\)>-adic Hodge theory, Preprint (2016), arXiv:1608.00922.
[32] W.Nizioł, Semistable conjecture via K-theory, Duke Math. J.141 (2008), 151-178; MR 2372150. · Zbl 1157.14009
[33] A.Ogus, Lectures on Logarithmic Algebraic Geometry, Cambridge Studies in Advanced Mathematics, vol. 178 (Cambridge University Press, 2018). · Zbl 1437.14003
[34] M.Raynaud and L.Gruson, Critères de platitude et de projectivité. Techniques de ‘platification’ d’un module, Invent. Math.13 (1971), 1-89 (French); MR 0308104. · Zbl 0227.14010
[35] P.Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci.116 (2012), 245-313; MR 3090258. · Zbl 1263.14022
[36] P.Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi1 (2013), e1, 77; MR 3090230. · Zbl 1297.14023
[37] P.Scholze, Perfectoid spaces: a survey, in Current developments in mathematics 2012 (Int. Press, Somerville, MA, 2013), 193-227; MR 3204346. · Zbl 1327.14008
[38] P.Scholze, p-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi4 (2016), e6, 4; MR 3535697. · Zbl 1405.14049
[39] M.Artin, A.Grothendieck and J. L.Verdier (eds), Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas (SGA 4), tome 2, Lecture Notes in Mathematics, vol. 270 (Springer, Berlin, 1972), avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat (in French); MR 0354653 (50 #7131). · Zbl 0234.00007
[40] A.Grothendieck, Séminaire de Géométrie Algébrique du Bois Marie - 1967-69 - Groupes de monodromie en géométrie algébrique (SGA 7), vol. 1, Lecture Notes in Mathematics, vol. 288 (Springer, Berlin, 1972), avec la collaboration de M. Raynaud et D. S. Rim (in French); MR 0354656 (50 #7134). · Zbl 0237.00013
[41] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2018.
[42] T.Szamuely and G.Zábrádi, The p-adic Hodge decomposition according to Beilinson, in Algebraic geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol. 97 (American Mathematical Society, Providence, RI, 2018), 495-572; MR 3821183. · Zbl 1451.14079
[43] T.Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math.137 (1999), 233-411; MR 1705837. · Zbl 0945.14008
[44] F.Tan and J.Tong, Crystalline comparison isomorphisms in<![CDATA \([p]]\)>-adic Hodge theory: the absolutely unramified case, Preprint (2015), arXiv:1510.05543.
[45] P.Ullrich, The direct image theorem in formal and rigid geometry, Math. Ann.301 (1995), 69-104; MR 1312570. · Zbl 0821.32029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.