×

Adinkras, dessins, origami, and supersymmetry spectral triples. (English) Zbl 1445.17002

The authors investigate the spectral geometry and spectral action functionals associated to 1D supersymmetry algebras, using the classification of these superalgebras in terms of Adinkra graphs, a class of decorated \(N\)-regular, \(N\)-edge colored bipartite graphs related to representations of the \(N\)-extended one-dimensional super Poincaré algebra (see [C. Doran et al., Adv. Theor. Math. Phys. 19, No. 5, 1043–1113 (2015; Zbl 1382.14009)]). Other closely related constructions are dessins d’enfant and origami curves. The resulting spectral action functionals are computed in terms of the Selberg (super) trace formula and the Poisson summation formula.

MSC:

17A70 Superalgebras
05C15 Coloring of graphs and hypergraphs
14H57 Dessins d’enfants theory
17B81 Applications of Lie (super)algebras to physics, etc.
30F99 Riemann surfaces
81T60 Supersymmetric field theories in quantum mechanics

Citations:

Zbl 1382.14009

Software:

Adinkras

References:

[1] A. M. Baranov, Yu. I. Manin, I. V. Frolov and A. S. Schwarz, “A superanalog of the Selberg trace formula and multiloop contributions for fermionic strings,” Commun. Math. Phys. 111(3), 373-392 (1987). · Zbl 0624.58033 · doi:10.1007/BF01238904
[2] W. Beenakker, T. van den Broek and W. van Suijlekom, Supersymmetry and Noncommutative Geometry (Springer, 2015). · Zbl 1331.81005
[3] G. Belyi, “On Galois extensions of a maximal cyclotomic field,” Math. USSR Izv. 14(2), 247-256 (1980). · Zbl 0429.12004 · doi:10.1070/IM1980v014n02ABEH001096
[4] J. Bolte and H.M. Stiepan, “The Selberg trace formula for Dirac operators,” J. Math. Phys. 47(11), 112104, 16 pp. (2006). · Zbl 1112.58031 · doi:10.1063/1.2359578
[5] A. H. Chamseddine and A. Connes, “The spectral action principle,” Comm. Math. Phys. 186(3), 731-750 (1997). · Zbl 0894.58007 · doi:10.1007/s002200050126
[6] C. H. Chang and D. Mayer, “Thermodynamic formalism and Selberg’s zeta function for modular groups,” Regul. Chaotic Dyn. 5, 281-312 (2000). · Zbl 0979.37014 · doi:10.1070/rd2000v005n03ABEH000150
[7] D. Cimasoni and N. Reshetikhin, “Dimers on surface graphs and spin structures, I,” Comm. Math. Phys. 275, 187-208 (2007). · Zbl 1135.82006 · doi:10.1007/s00220-007-0302-7
[8] P. B. Cohen, C. Itzykson and J. Wolfart, “Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi,” Comm. Math. Phys. 163(3), 605-627 (1994). · Zbl 0811.14030 · doi:10.1007/BF02101464
[9] A. Connes, “Geometry from the spectral point of view,” Lett. Math. Phys. 34(3), 203-238 (1995). · Zbl 1042.46515 · doi:10.1007/BF01872777
[10] A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications 55 (American Mathematical Society, 2008). · Zbl 1159.58004
[11] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, G. D. Landweber and R. L. Miller, “Codes and supersymmetry in one dimension,” Adv. Theor. Math. Phys. 15(6), 1909-1970 (2011). · Zbl 1276.81113 · doi:10.4310/ATMP.2011.v15.n6.a7
[12] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga and G. D. Landweber, “Relating doubly-even error-correcting codes, graphs, and irreducible representations of <Emphasis Type=”Italic“>N-supersymmetry,” in: Discrete and Computational Mathematics, pp. 53-71 (Nova Sci. Publ., 2008).
[13] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga and G. D. Landweber, “On graph-theoretic identifications of Adinkras, supersymmetry representations and superfields,” Int. J. Mod. Phys. A 22, 869-930 (2007). · Zbl 1124.81025 · doi:10.1142/S0217751X07035112
[14] C. F. Doran, K. Iga, J. Kostiuk, G. Landweber and S. Méndez-Diez, “Geometrization of <Emphasis Type=”Italic“>N-extended 1-dimensional supersymmetry algebras, I,” Adv. Theor. Math. Phys. 19(5), 1043-1113 (2015). · Zbl 1382.14009 · doi:10.4310/ATMP.2015.v19.n5.a4
[15] C. F. Doran, K. Iga, J. Kostiuk and S. Méndez-Diez, “Geometrization of <Emphasis Type=”Italic“>N-extended 1-dimensional supersymmetry algebras, II,” arXiv:1610.09983, (2016). · Zbl 1382.14009
[16] C. F. Doran, T. Gannon, H. Movasati and K. M. Shokri, “Automorphic forms for triangle groups,” Commun. Number Theory Phys. 7(4), 689-737 (2013). · Zbl 1295.11050 · doi:10.4310/CNTP.2013.v7.n4.a4
[17] M. Faux and S. J. Gates, Jr., “Adinkras: a graphical technology for supersymmetric representation theory,” Phys. Rev. D 71(3), 065002 (2005). · doi:10.1103/PhysRevD.71.065002
[18] J. Fisher, An Approach to the Selberg Trace Formula via the Selberg Zeta-Function, Lecture Notes in Mathematics 1253 (Springer, 1987). · Zbl 0618.10029
[19] D. Fried, “Symbolic dynamics for triangle groups,” Invent. Math. 125(3), 487-521 (1996). · Zbl 0878.58022 · doi:10.1007/s002220050084
[20] S. J. Gates Jr. and T. Hübsch, “On dimensional extension of supersymmetry: From worldlines to world-sheets,” Adv. Theor. Math. Phys. 16, 1619-1667 (2012). · Zbl 1286.81156 · doi:10.4310/ATMP.2012.v16.n6.a2
[21] E. Girondo and G. González-Diez, Introduction to Compact Riemann Surfaces and Dessins d’Enfants (Cambridge University Press, 2012). · Zbl 1253.30001
[22] C. Grosche, “Selberg supertrace formula for super Riemann surfaces, analytic properties of Selberg super zeta-functions and multiloop contributions for the fermionic string,” Comm. Math. Phys. 133(3), 433-485 (1990). · Zbl 0715.11027 · doi:10.1007/BF02097005
[23] C. Grosche, Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae (World Scientific, 2013). · Zbl 1282.58001
[24] R. Haag, M. Sohnius and J. Lopuszanski, “All possible generators of supersymmetries of the S-matrix,” Nucl. Phys. B 88, 257-274 (1975). · doi:10.1016/0550-3213(75)90279-5
[25] Herrlich, F., Introduction to origamis in Teichmüller space, 233-253 (2012), Zürich · Zbl 1264.30033 · doi:10.4171/105-1/3
[26] F. Herrlich and G. Schmithüsen, “Dessins d’enfants and origami curves,” Handbook of Teichmüller Theory. Vol. II, pp. 767-809, IRMA Lect. Math. Theor. Phys. 13 (Eur. Math. Soc., 2009). · Zbl 1203.30043
[27] T. Hübsch, “Weaving worldsheet supermultiplets from the worldlines within,” Adv. Theor. Math. Phys. 17(5), 903-974 (2013). · Zbl 1312.81119 · doi:10.4310/ATMP.2013.v17.n5.a2
[28] K. Iga and Y. X. Zhang, “Structural theory and classification of 2-d adinkras,” Adv. High Energy Phys., Art. ID 3980613, 12 pp. (2016). · Zbl 1375.81224
[29] H. Kim and I. Saberi, “Real homotopy theory and supersymmetric quantum mechanics,” arXiv:1511.00978, (2015). · Zbl 1401.81076
[30] Lando, S. K.; Zvonkin, A. K., Graphs on surfaces and their applications (2004), Berlin · Zbl 1040.05001
[31] A. López Almorox and C. Tejero Prieto, “Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces,” J. Geom. Phys. 56(10), 2069-2091 (2006). · Zbl 1101.58019 · doi:10.1016/j.geomphys.2005.11.007
[32] Yu. I. Manin, Topics in Noncommutative Geometry (Princeton University Press, 1991). · Zbl 0724.17007
[33] Yu. I. Manin, Gauge Field Theory and Complex Geometry (Springer, 1997). · Zbl 0884.53002
[34] Yu. I. Manin and M. Marcolli, “Continued fractions, modular symbols, and noncommutative geometry,” Selecta Math. (N.S.) 8(3), 475-521 (2002). · Zbl 1116.11033 · doi:10.1007/s00029-002-8113-3
[35] M. Marcolli, “Limiting modular symbols and the Lyapunov spectrum,” J. Number Theory 98(2), 348-376 (2003). · Zbl 1158.11316 · doi:10.1016/S0022-314X(02)00044-6
[36] M. Marcolli, Noncommutative Cosmology (World Scientific, 2017).
[37] M. Matone, “Uniformization theory and 2D gravity. I. Liouville action and intersection numbers,” Inter. J. Modern Phys. A 10(3), 289-335 (1995). · Zbl 1044.32501 · doi:10.1142/S0217751X95000139
[38] M. Matone, “Eigenfunctions of the Laplacian acting on degree zero bundles over special Riemann surfaces,” Trans. Amer. Math. Soc. 356(8), 2989-3004 (2004). · Zbl 1129.58305 · doi:10.1090/S0002-9947-04-03587-1
[39] D. Mayer, T. Mühlenbruch and F. Strömberg, “The transfer operator for the Hecke triangle groups,” Discrete Contin. Dyn. Syst. 32(7), 2453-2484 (2012). · Zbl 1297.11110 · doi:10.3934/dcds.2012.32.2453
[40] M. Möller, “Teichmüller curves, Galois actions and <InlineEquation ID=”IEq1“> <EquationSource Format=”TEX“>\[ \widehat{GT} \] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“ display=”block“> <mover accent=”true“> GT <mo stretchy=”true“>^-relations,” Mathematische Nachrichten 278(9), 1061-1077 (2005). · Zbl 1081.14039 · doi:10.1002/mana.200310292
[41] M. Möller and A. D. Pohl, “Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant,” Ergodic Theory Dynam. Syst. 33(1), 247-283 (2013). · Zbl 1277.37048 · doi:10.1017/S0143385711000794
[42] F. Nisbach, The Galois Action on Origami Curves and a Special Case of Origamis, PhD thesis, Karlsruher Institut für Technologie, (2011).
[43] A. Pohl, “Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds,” Discrete Contin. Dyn. Syst. 34(5), 2173-2241 (2014). · Zbl 1312.37033 · doi:10.3934/dcds.2014.34.2173
[44] W. Roelcke, “Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I,” Math. Ann. 167, 292-337 (1966). · Zbl 0152.07705 · doi:10.1007/BF01364540
[45] G. B. Shabat and V. A. Voevodsky, “Drawing curves over number fields,” in: The Grothendieck Festschrift, 3, pp. 199-227 (Birkhäuser, 1990). · Zbl 0790.14026 · doi:10.1007/978-0-8176-4576-2_8
[46] L. Schneps (Ed.), The Grothendieck Theory of Dessins d’Enfants (Cambridge University Press, 1994). · Zbl 0798.00001
[47] F. Strömberg, “Computation of Selberg zeta functions on Hecke triangle groups,” arXiv:0804.4837, (2008).
[48] W. van Suijlekom, Noncommutative Geometry and Particle Physics (Springer, 2014). · Zbl 1305.81007
[49] Y. X. Zhang, “Adinkras for mathematicians,” Trans. Amer. Math. Soc. 366(6), 3325-3355 (2014). · Zbl 1290.05029 · doi:10.1090/S0002-9947-2014-06031-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.