×

Pointwise error estimates of a linearized difference scheme for strongly coupled fractional Ginzburg-Landau equations. (English) Zbl 1444.65049

Summary: In this paper, a linearized semi-implicit finite difference scheme is proposed to solve the strongly coupled fractional Ginzburg-Landau equations. The difference scheme, which involves three time levels, is unconditionally stable, fourth-order accurate in space, and second-order accurate in time. By using the energy method and mathematical induction, the unique solvability, the unconditional stability, and optimal pointwise error estimate are obtained. Finally, some numerical experiments are presented to validate our theoretical findings.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35Q56 Ginzburg-Landau equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] AransonIS, KramerL. The world of the complex Ginzburg‐Landau equation. Rev. Mod. Phys.2002;74(1):99-143. · Zbl 1205.35299
[2] DuanJ, TitiE, HolmesP. Regularity approximation and asymptotic dynamics for a generalized Ginzburg‐Landau equation. Nonlinearity. 1993;6(6):915-933. · Zbl 0808.35133
[3] DuanJ, HolmesP, TitiE. Global existence theory for a generalized Ginzburg‐Landau equation. Nonlinearity. 1992;5(6):1303-1314. · Zbl 0783.35070
[4] DoeringCR, GibbonJD, LevermoreCD. Weak and strong solutions of the complex Ginzburg‐Landau equation. Physica D. 1994;71(3):285-318. · Zbl 0810.35119
[5] GaoH, LinG, DuanJ. Asymptotics for the generalized two‐dimensional Ginzburg‐Landau equation. J. Math. Anal. Appl.2000;247(1):198-216. · Zbl 0952.35035
[6] GuoB, WangG, LiD. The attractor of the stochastic generalized Ginzburg‐Landau equation. Sci. China Ser. A. 2008;51(5):955-964. · Zbl 1154.35318
[7] HuoZ, JiaY. Global well‐posedness for the generalized 2D Ginzburg‐Landau equation. J. Differ. Equations. 2009;247(1):260-276. · Zbl 1173.35305
[8] SakaguchiH, MalomedBA. Stable solitons in coupled Ginzburg‐Landau equations describing Bose‐Einstein condensates and nonlinear optical waveguides and cavities. Physica D. 2003;183(3‐4):282-292. · Zbl 1038.35127
[9] PorsezianK, MuraliR, MalomedBA, GanapathyR. Modulational instability in linearly coupled complex cubic‐quintic Ginzburg‐Landau equations. Chaos, Soliton Fract.2009;40(4):1907-1913. · Zbl 1198.35266
[10] ZakeriGA, YombaE. Modulational instability regions for coupled Ginzburg‐Landau equations with higher order of nonlinearities. Phys. Rev. E. 2006;91(6):062904.
[11] TarasovV, ZaslavskyG. Fractional Ginzburg‐Landau equation for fractal media. Physica A. 2005;354:249-261.
[12] TarasovV, ZaslavskyG. Fractional dynamics of coupled oscillators with long‐range interaction. Chaos. 2006;16(1):023110. · Zbl 1152.37345
[13] MilovanovA, RasmussenJ. Fractional generalization of the Ginzburg‐Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A. 2005;337(1‐2):75-80. · Zbl 1135.82320
[14] ShuJ, LiP, ZhangJ, LiaoO. Random attractors for the stochastic coupled fractional Ginzburg‐Landau equation with additive noise. J. Math. Phys.2015;56(10):102702. · Zbl 1341.35153
[15] TarasovV. Psi‐series solution of fractional Ginzburg‐Landau equation. J. Phys. A‐Math. Gen.2006;39(26):8395-8407. · Zbl 1122.34003
[16] PuX, GuoB. Well‐posedness and dynamics for the fractional Ginzburg‐Landau equation. Appl. Anal.2013;92(2):318-334. · Zbl 1293.35310
[17] GuoB. Huo Z. Well‐posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg‐Landau equation. Fract. Calc. Appl. Anal.2013;16(1):226-242. · Zbl 1312.35180
[18] LuH, LöS, FengZ. Asymptotic dynamics of 2d fractional complex Ginzburg‐Landau equation. Int. J. Bifurcat. Chaos. 2013;23(12):1350202. · Zbl 1284.35456
[19] MillotV, SireY. On a fractional Ginzburg‐Landau equation and 1/2‐harmonic maps into spheres. Arch. Ration. Mech. An.2015;215(1):125-210. · Zbl 1372.35291
[20] LordGJ. Attractors and inertial manifolds for finite‐difference approximations of the complex Ginzburg‐Landau equation. SIAM J. Numer Anal.1997;34(4):1483-1512. · Zbl 0888.65104
[21] XuQ, ChangQ. Difference methods for computing the Ginzburg‐Landau equation in two dimensions. Numer. Meth. Part. D. E.2011;27:507-528. · Zbl 1218.65089
[22] WangT, GuoB. Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation. Numer. Meth. Part. D. E.2011;27(5):1340-1363. · Zbl 1233.65062
[23] ZhangL. Long time behavior of difference approximations for the two‐dimensional complex Ginzburg‐Landau equation. Numer. Func. Anal. Opt.2010;31(10):1190-1211. · Zbl 1410.65335
[24] ZhangY, SunZ, WangT. Convergence analysis of a linearized Crank‐Nicolson scheme for the two‐dimensional complex Ginzburg‐Landau equation. Numer. Meth. Part. D. E.2013;29(5):1487-1503. · Zbl 1274.65262
[25] HaoZ, SunZ, CaoW.A Three‐level linearized compact difference scheme for the Ginzburg‐Landau equation. Numer. Meth. Part. D. E.2015;31(3):876-899. · Zbl 1320.65116
[26] WangP, HuangC. An implicit midpoint difference scheme for the fractional Ginzburg‐Landau equation. J. Comput. Phys.2016;312:31-49. · Zbl 1351.76191
[27] MvogoA, TambueA, Ben‐BolieG, KofaneT. Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg‐Landau equation. Commun. Nonlinear Sci.2016;39:396-410. · Zbl 1510.35320
[28] WangP, HuangC. An implicit midpoint difference scheme for the fractional Ginzburg‐Landau equation. J. Comput. Phys.2016;312:31-49. · Zbl 1351.76191
[29] HaoZ, SunZ.A Linearized high‐order difference scheme for the fractional Ginzburg‐Landau equation. Numer. Meth. Part. D. E.2017;33(1):105-124. · Zbl 1359.65150
[30] HeD, PanK. An unconditionally stable linearized difference scheme for the fractional Ginzburg‐Landau equation. Numer. Algorithms. 2018;79(3):899-925. · Zbl 1402.65088
[31] WangP, HuangC. An efficient fourth‐order in space difference scheme for the nonlinear fractional Ginzburg‐Landau equation. BIT Numer. Math.2018;58(3):783-805. · Zbl 1412.65095
[32] LiM, HuangC. An efficient difference scheme for the coupled nonlinear fractional Ginzburg‐Landau equations with the fractional Laplacian. Numer. Meth. Part. D. E.2019;35(1):394-421. · Zbl 1419.65024
[33] LiM, GuX, HuangC. M.A Fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys.2018;358:256-282. · Zbl 1382.65320
[34] WangD, XiaoA, YangW. Crank‐Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys.2013;242:67-681. · Zbl 1297.65100
[35] WangD, XiaoA, YangW. Maximum‐norm error analysis of a difference scheme for the space fractional CNLS. Appl. Math. Comput.2015;257:241-251. · Zbl 1339.65137
[36] MeerschaertMM, TadjeranC. Finite difference approximations for fractional advection‐dispersion flow equations. J. Comput. Appl. Math.2004;172:65-77. · Zbl 1126.76346
[37] MeerschaertMM, SchefflerHP, TadjeranC. Finite difference methods for two‐dimensional fractional dispersion equation. J. Comput. Phys.2006;211:249-261. · Zbl 1085.65080
[38] YangQ, LiuF, TurnerI. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model.2010;34(1):200-218. · Zbl 1185.65200
[39] ZhaoX, SunZ, HaoZ. A fourth‐order compact ADI scheme for two‐dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput.2014;36(6):A2865-A2886. · Zbl 1328.65187
[40] TianW, ZhouH, DengW. Class of second order difference approximation for solving space fractional diffusion equations. Math. Comput.2015;84(294):1703-1727. · Zbl 1318.65058
[41] ZhouH, TianW, DengW. Quasi‐compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput.2013;56(1):45-66. · Zbl 1278.65130
[42] OrtigueiraM. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci.2006:1-12. · Zbl 1122.26007
[43] ÇelikC, DumanM. Crank‐Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys.2012;231(4):1743-1750. · Zbl 1242.65157
[44] HeD, PanK. Maximum norm error analysis of an unconditionally stable semi‐implicit scheme for multi‐dimensional Allen‐Cahn equations. Numer. Meth. Part. D. E.2019;35(3):955-975. · Zbl 1418.65099
[45] CaiW, HeD, PanK. Linearized energy‐conservative finite element method for the nonlinear Schrödinger equation with wave operator. Appl. Numer. Math.2019;140:183-198. · Zbl 1432.65144
[46] HeD, PanK. An unconditionally stable linearized CCD‐ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions. Comput. Math. Appl.2017;73(11):2360-2374. · Zbl 1373.65056
[47] HeD, PanK, YueX.A Positivity preserving and free energy dissipative difference scheme for the Poisson‐Nernst‐Planck system. J. Sci. Comput.2019;81(1):436-458. · Zbl 1427.65165
[48] WangP, HuangC. An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys.2015;293:238-251. · Zbl 1349.65346
[49] HolteJM. Discrete Gronwall lemma and applications. MAA‐NCS meeting at the University of North Dakota. 2009;24:1-7.
[50] HeD, PanK. A linearly implicit conservative difference scheme for the generalized Rosenau‐Kawahara‐RLW equation. Appl. Math. Comput.2015;271:323-336. · Zbl 1410.65312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.