×

Uniform stabilization of a wave equation with partial Dirichlet delayed control. (English) Zbl 1443.35092

Authors’ abstract: We consider the uniform stabilization of some high-dimensional wave equations with partial Dirichlet delayed control. Herein we design a parameterization feedback controller to stabilize the system. This is a new approach of controller design which overcomes the difficulty in stability analysis of the closed-loop system. The detailed procedure is as follows: At first, we rewrite the system with partial Dirichlet delayed control into an equivalence cascaded system of a transport equation and a wave equation, and then we construct an exponentially stable target system; Further, we give the form of the parameterization feedback controller. To stabilize the system under consideration, we choose some appropriate kernel functions and define a bounded inverse linear transformation such that the closed-loop system is equivalent to the target system. Finally, we obtain the stability of closed-loop system by the stability of target system.

MSC:

35L20 Initial-boundary value problems for second-order hyperbolic equations
35L05 Wave equation
93C20 Control/observation systems governed by partial differential equations
93D15 Stabilization of systems by feedback
35G15 Boundary value problems for linear higher-order PDEs
Full Text: DOI

References:

[1] K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30, 117-130 (2002) · Zbl 1020.35042
[2] C. Bardos; G. Lebeau; J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30, 1024-1065 (1992) · Zbl 0786.93009 · doi:10.1137/0330055
[3] D. Bresch-Pietri and M. Krstic, Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements, Proc. of the 2015 Conference on Decision and Control, (2015).
[4] G. Chen, Energy decay estimates and exact boundary valued controllability of the wave equation in a bounded domain, J. Math. Pure. Appl., 58, 249-273 (1979) · Zbl 0414.35044
[5] G. Chen, A note on boundary stabilization of the wave equation, SIAM J. Control Optim., 19, 106-113 (1981) · Zbl 0461.93036 · doi:10.1137/0319008
[6] R. Datko; J. Lagnese; M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24, 152-156 (1986) · Zbl 0592.93047 · doi:10.1137/0324007
[7] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26, 697-713 (1988) · Zbl 0643.93050 · doi:10.1137/0326040
[8] R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Automat. Control, 42, 511-515 (1997) · Zbl 0878.73046 · doi:10.1109/9.566660
[9] B. Z. Guo; X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation, SIAM J. Control Optim., 44, 1598-1613 (2005) · Zbl 1134.35318 · doi:10.1137/040610702
[10] B. Z. Guo; Z. X. Zhang, Dirichlet boundary stabilization of the wave equation, ESAIM Control Optim. & Calc. Var., 13, 776-792 (2007) · Zbl 1147.35051 · doi:10.1051/cocv:2007040
[11] W. Guo; H. C. Zhou; M. Krstic, Adaptive error feedback output regulation for 1D wave equation, Internat. J. Robust Nonlinear Control, 28, 4309-4329 (2018) · Zbl 1401.93122
[12] Z. J. Han; G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31, 533-550 (2014) · Zbl 1303.93154 · doi:10.1093/imamci/dnt030
[13] I. Lasiecka; J. L. Lions; R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65, 149-192 (1986) · Zbl 0631.35051
[14] I. Lasiecka; R. Triggiani, Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97, 112-130 (1983) · Zbl 0562.93061 · doi:10.1016/0022-247X(83)90241-X
[15] I. Lasiecka; R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with \(L_2 (0, +\infty; L_2(\Gamma))\)-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66, 340-390 (1987) · Zbl 0629.93047 · doi:10.1016/0022-0396(87)90025-8
[16] W. Littman, Boundary Control Theory for hyperbolic and parabolic partial differential equations with constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5, 567-580 (1978) · Zbl 0395.35007
[17] X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstr. Appl. Anal., (2013), Art. ID 726794, 15 pp. · Zbl 1421.93120
[18] X. F. Liu; G. Q. Xu, Exponential stabilization for Timoshenko beam with different delays in the boundary control, IMA J. Math. Control Inform., 34, 93-110 (2017) · Zbl 1397.93184 · doi:10.1093/imamci/dnv036
[19] C. A. McMillan, Stabilization of the wave equation with finite range Dirichlet boundary feedback, J. Math. Anal. Appl., 171, 139-155 (1992) · Zbl 0778.93059 · doi:10.1016/0022-247X(92)90382-N
[20] S. Nicaise; C. Pingotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45, 1561-1585 (2006) · Zbl 1180.35095 · doi:10.1137/060648891
[21] S. Nicaise; J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2, 425-479 (2007) · Zbl 1211.35050 · doi:10.3934/nhm.2007.2.425
[22] S. Nicaise; C. Pingotti, Exponential stability of second order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28, 417-446 (2011) · Zbl 1251.93112 · doi:10.1093/imamci/dnr012
[23] S. Nicaise; C. Pignotti, Stabilization of second-order evolution equations with time delay, Math. Control Signals Systems, 26, 563-588 (2014) · Zbl 1307.35173 · doi:10.1007/s00498-014-0130-1
[24] S. Nicaise; C. Pignotti, Exponential stability of abstract evolution equations with time delay, J. Evol. Equ., 15, 107-129 (2015) · Zbl 1315.93067 · doi:10.1007/s00028-014-0251-5
[25] S. Nicaise; C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst. Ser. S, 9, 791-813 (2016) · Zbl 1346.35121 · doi:10.3934/dcdss.2016029
[26] Z.-H. Ning; Q.-X. Yan, Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback, J. Math. Anal. Appl., 367, 167-173 (2010) · Zbl 1191.35164 · doi:10.1016/j.jmaa.2009.12.058
[27] C. Pignotti, A note on stabilization of locally damped wave equations with time delay, Systems Control Lett., 61, 92-97 (2012) · Zbl 1250.93103 · doi:10.1016/j.sysconle.2011.09.016
[28] Y. F. Shang; G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Systems Control Lett., 61, 1069-1078 (2012) · Zbl 1252.93100 · doi:10.1016/j.sysconle.2012.07.012
[29] Y. F. Shang; G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math. Anal. Appl., 422, 858-879 (2015) · Zbl 1297.93131 · doi:10.1016/j.jmaa.2014.09.013
[30] A. Smyshlyaev; E. Cerpa; M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48, 4014-4031 (2010) · Zbl 1208.35083 · doi:10.1137/080742646
[31] R. Triggiani, Exact boundary controllability on \(L^2(\Omega)\times H^{-1}(\Omega)\) of the wave equation with Dirichlet boundary control acting on a portion of the boundary \(\partial\Omega \), and Related Problems, Appl. Math. Optim., 18, 241-277 (1988) · Zbl 0656.93011 · doi:10.1007/BF01443625
[32] H. Wang; G. Q. Xu, Exponential stabilization of 1-d wave equation with input delay, WSEAS Transactions on Mathematics, 12, 1001-1013 (2013)
[33] G. Q. Xu; S. P. Yung; L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12, 770-785 (2006) · Zbl 1105.35016 · doi:10.1051/cocv:2006021
[34] G. Q. Xu; H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control, Internat. J. Control, 86, 1165-1178 (2013) · Zbl 1278.93221 · doi:10.1080/00207179.2013.787494
[35] P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37, 1568-1599 (1999) · Zbl 0951.35069 · doi:10.1137/S0363012997331482
[36] P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differential Equations, 241, 62-93 (2007) · Zbl 1214.35037 · doi:10.1016/j.jde.2007.06.014
[37] P. F. Yao, Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 2010, 59-70. · Zbl 1190.35036
[38] P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 2010,191-233. · Zbl 1185.93018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.