×

Bifurcation branch of stationary solutions in a general predator-prey system with prey-taxis. (English) Zbl 1442.92134

Summary: In this paper, a general reaction-diffusive predator-prey system with prey-taxis subject to the homogeneous Neumann boundary condition is considered. Firstly, we investigate the local stability of the unique positive equilibrium by analyzing the characteristic equation and study a priori estimates of positive solutions by the iterative technique. And then, choosing the prey-tactic sensitivity coefficient as bifurcation parameter, we proved that a branch of nonconstant solutions can bifurcate from the unique positive equilibrium when the prey-tactic sensitivity is repulsive. Moreover, we find the stable bifurcating solutions near the bifurcation point by the spectrum theory under some suitable conditions. Our results show that prey-taxis can destabilize the uniform equilibrium and yields the occurrence of spatial patterns.

MSC:

92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Lotka, A., Elements of Mathematical Biology (1956), Dover: Dover New York · Zbl 0074.14404
[2] V. Volterra, U. D’Ancona, La concorrenza vitale tra le specie dell’ambiente marino, in: VIIe Congr. Int. acquicult et de p \(\hat{e} \); V. Volterra, U. D’Ancona, La concorrenza vitale tra le specie dell’ambiente marino, in: VIIe Congr. Int. acquicult et de p \(\hat{e} \)
[3] Huang, J. C.; Gong, Y. J.; Ruan, S. G., Bifurcation analysis in a predator \(-\) prey model with constant-yield predator harvesting, Discrete. Contin. Dyn. Syst. Ser. B, 18, 2101-2121 (2013) · Zbl 1417.34092
[4] Lan, K. Q.; Zhu, C. R., Phase portraits of predator \(-\) prey systems with harvesting rates, Discrete. Contin. Dyn. Syst. Ser. B, 32, 901-933 (2012) · Zbl 1252.34052
[5] Lan, K. Q.; Zhu, C. R., Phase portraits, Hopf bifurcations and limit cycles of the Holling \(-\) Tanner models for predator \(-\) prey interactions, Nonlinear Anal. RWA, 12, 1961-1973 (2011) · Zbl 1220.34068
[6] Xiao, D. M.; Jennings, L. S., Bifurcations of a ratio \(-\) dependent predator \(-\) prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 737-753 (2005) · Zbl 1094.34024
[7] Zhu, C. R.; Kong, L., Bifurcations analysis of Leslie \(-\) Gower predator \(-\) prey models with nonlinear predator-harvesting, Discrete. Contin. Dyn. Syst. Ser. S, 10, 1187-1205 (2017) · Zbl 1365.92112
[8] Du, Y. H.; Shi, J. P., A diffusive predator \(-\) prey model with a protection zone, J. Differential Equations, 229, 63-91 (2006) · Zbl 1142.35022
[9] Hutson, V.; Lou, Y.; Mischaikow, K., Spatial heterogeneity of resources versus Lotk-Volterra dynamics, J. Differential Equations, 185, 97-136 (2002) · Zbl 1023.35047
[10] Song, Y.; Zou, X., Spatiotemporal dynamics in a diffusive ratio \(-\) dependent predator \(-\) prey model near a hopf \(-\) turing bifurcation point, Comput. Math. Appl., 67, 1978-1997 (2014) · Zbl 1366.92111
[11] Yi, F. Q.; Wei, J. J.; Shi, J. P., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator \(-\) prey system, J. Differential Equations, 246, 1944-1977 (2009) · Zbl 1203.35030
[12] Ainseba, B. E.; Bendahmane, M.; Noussair, A., A reaction \(-\) diffusion system modeling predator \(-\) prey with prey-taxis, Nonlinear Anal. RWA, 9, 2086-2105 (2008) · Zbl 1156.35404
[13] Hauzy, C.; Hulot, F. D.; Gins, A.; Loreau, M., Intra- and interspecific densitydependent dispersal in an aquatic prey \(-\) predator system, J. Anim. Ecol., 76, 552-558 (2007)
[14] Kareiva, P.; Odell, G., Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Am. Nat., 130, 233-270 (1987)
[15] Lee, J. M.; Hillen, T.; Lewis, M. A., Pattern formation in prey-taxis systems, J. Biol. Dyn., 3, 551-573 (2009) · Zbl 1315.92064
[16] Chakraborty, A.; Singh, M., Effect of prey-taxis on the periodicity of predator \(-\) prey dynamics, Can. Appl. Math. Q., 16, 255-278 (2008) · Zbl 1181.92079
[17] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[18] Dubey, B.; Das, B.; Hussain, J., A predator \(-\) prey interaction model with self and cross-diffusion, Ecol. Model., 141, 67-76 (2001)
[19] Jorn, J., Negative ionic cross diffusion coefficients in electrolytic solutions, J. Theoret. Biol., 55, 529-532 (1975)
[20] Ajraldi, V.; Pittavino, M.; Venturino, E., Modeling herd behavior in population systems, Nonlinear Anal. RWA, 12 (2011), 2319-233 · Zbl 1225.49037
[21] Braza, P. A., Predator \(-\) prey dynamics with square root functional responses, Nonlinear Anal. RWA, 13, 1837-1843 (2012) · Zbl 1254.92072
[22] Hsu, S. B., On global stability of a predator \(-\) prey system, Math. Biosci., 39, 1-10 (1978) · Zbl 0383.92014
[23] Hsu, S. B.; Shi, J., Relaxation oscillation profile of limit cycle in predator \(-\) prey system, Discrete Contin. Dyn. Syst. Ser. B, 11, 893-911 (2009) · Zbl 1176.34049
[24] Kong, L.; Zhu, C. R., Bogdanov-Takens bifurcations of codimension 2 and 3 in a Leslie \(-\) Gower predator \(-\) prey model with Michaelis-Menten type prey-harvesting, Math. Meth. Appl. Sci., 40, 6715-6731 (2017) · Zbl 1384.34057
[25] Cheng, K. S., Uniqueness of a limit cycle for a predator \(-\) prey system, SIAM J. Math. Anal., 12, 541-548 (1981) · Zbl 0471.92021
[26] Rosenzweig, M. L., Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 385-387 (1971)
[27] Du, Y. H.; Shi, J. P., Some recent results on diffusive predator \(-\) prey models in spatially heterogeneous environment, (Nonlinear Dynamics and Evolution Equations. Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48 (2006), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 95-135 · Zbl 1100.35041
[28] Ko, W.; Ryu, K., Qualitative analysis of a predator \(-\) prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231, 534-550 (2006) · Zbl 1387.35588
[29] Tang, X.; Song, Y., Bifurcation analysis and Turing instability in a diffusive predator \(-\) prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals, 81, 303-314 (2015) · Zbl 1355.92098
[30] Wang, J.; Shi, J.; Wei, J., Dynamics and pattern formation in a diffusive predator \(-\) prey system with strong Alleeeffect in prey, J. Differential Equations, 251, 1276-1304 (2011) · Zbl 1228.35037
[31] Tang, X.; Song, Y., Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator \(-\) prey model with herd behavior, Appl. Math. Comput., 254, 375-391 (2015) · Zbl 1410.37092
[32] Tang, X.; Song, Y.; Zhang, T., Turing \(-\) Hopf bifurcation analysis of a predator \(-\) prey model with herd behavior and cross-diffusion, Nonlinear Dynam., 86, 73-89 (2016) · Zbl 1349.37091
[34] Wang, X.; Wang, W.; Zhang, G., Global bifurcation of solutions for a predator \(-\) prey model with prey-taxis, Math. Methods Appl. Sci., 38, 431-443 (2015) · Zbl 1307.92333
[35] Song, Y.; Tang, X., Stability, steady-state bifurcations, and turing patterns in a predator \(-\) prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139, 371-404 (2017) · Zbl 1373.35324
[37] Wu, S.; Shi, J.; Wu, B., Global existence of solutions and uniform persistence of a diffusive predator \(-\) prey model with prey-taxis, J. Differential Equations, 260, 5847-5874 (2016) · Zbl 1335.35131
[38] Dung, L.; Smith, H., Steady states of models of microbial growth and competition with chemotaxis, J. Math. Anal. Appl., 229, 295-318 (1999) · Zbl 0933.35088
[39] Shi, J.; Wang, X., On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 7, 2788-2812 (2009) · Zbl 1165.35358
[40] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[41] Crandall, M. G.; Rabinowitz, P. H., Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52, 161-180 (1973) · Zbl 0275.47044
[42] Sattinger, D. H., Stability of bifurcating solutions by Leray-Schauder degree, Arch. Ration. Mech. Anal., 43, 154-166 (1971) · Zbl 0232.34027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.