×

Weak solutions of non-isothermal nematic liquid crystal flow in dimension three. (English) Zbl 1442.35334

Summary: For any smooth domain \(\Omega \subset \mathbb{R}^3\), we establish the existence of a global weak solution \((\mathbf{u d}, \theta)\) to the simplified, non-isothermal Ericksen-Leslie system modeling the hydrodynamic motion of nematic liquid crystals with variable temperature for any initial and boundary data \((\mathbf{u}_0, \mathbf{d}_0, \theta_0) \in \mathbf{H} \times H^1 (\Omega, \mathbb{S}^2) \times L^1 (\Omega)\), with \(\mathbf{d}_0 (\Omega) \subset \mathbb{S}_+^2\) (the upper half sphere) and \(\text{ess inf}_\Omega \theta_0 > 0\).

MSC:

35Q35 PDEs in connection with fluid mechanics
76A10 Viscoelastic fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35D30 Weak solutions to PDEs
35Q56 Ginzburg-Landau equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[2] De Anna, F.; Liu, C., Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency, Arch. Ration. Mech. Anal., 231, 637-717 (2019) · Zbl 1429.76032 · doi:10.1007/s00205-018-1287-4
[3] Doi, M.; Edwards, S., The Theory of Polymer Dynamics (1986), Oxford: Oxford University Press, Oxford
[4] Ericksen, J., Conservation laws for liquid crystals, Trans. Soc. Rheol., 5, 22-34 (1961)
[5] Ericksen, J., Continuum theory of nematic liquid crystals, Res. Mech., 21, 381-392 (1987)
[6] Evans, L., Partial Differential Equations. Graduate Studies in Mathematics (1998), Providence: American Mathematical Society, Providence · Zbl 0902.35002
[7] Feireisl, E.; Frémond, M.; Rocca, E.; Shimperna, G., A new approch to nonisothermal models for nematic liquid crystals, Arch. Rational. Mech. Anal., 205, 651-672 (2012) · Zbl 1282.76059 · doi:10.1007/s00205-012-0517-4
[8] De Gennes, P.; Prost, J., The Physics of Liquid Crystals (1995), Oxford: Oxford University Press, Oxford
[9] Hieber, M.; Prüss, J., Heat kernels and maximal \(L^p-L^q\) estimates for parabolic evolution equations, Commun. Partial Differ. Equ., 22, 1647-1669 (1997) · Zbl 0886.35030 · doi:10.1080/03605309708821314
[10] Huang, J.; Lin, F.; Wang, C., Regularity and existence of global solutions to the Ericksen-Leslie system in \({\mathbb{R}}^2\), Commun. Math. Phys., 331, 805-850 (2014) · Zbl 1298.35147 · doi:10.1007/s00220-014-2079-9
[11] Ladyzhenskaya, O.; Solonnikov, VA; Uralćeva, NN, Linear and Quasi-linear Equations of Parabolic Type (1968), Providence: American Mathematical Society, Providence · Zbl 0174.15403
[12] Leray, J., Sur le mouvement dún liquide visqueux emplissant léspace, Acta. Math., 63, 183-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[13] Leslie, FM, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28, 265-283 (1968) · Zbl 0159.57101 · doi:10.1007/BF00251810
[14] Li, J.; Xin, Z., Global weak solutions to non-isothermal nematic liquid crystal in 2D, Acta Math. Sci., 36, 973-1014 (2016) · Zbl 1363.35077 · doi:10.1016/S0252-9602(16)30054-6
[15] Lin, F., Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Commun. Pure Appl. Math., 42, 789-814 (1989) · Zbl 0703.35173 · doi:10.1002/cpa.3160420605
[16] Lin, F., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Commun. Pure Appl. Math., 51, 241-257 (1998) · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[17] Lin, F.; Liu, C., Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48, 501-537 (1995) · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[18] Lin, F.; Liu, C., Partial regularity of the dynamic system modeling the flow of liquid crystals, Discret. Contin. Dyn. Syst., 2, 1-22 (1996) · Zbl 0948.35098 · doi:10.3934/dcds.1996.2.1
[19] Lin, F.; Lin, J.; Wang, C., Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197, 297-336 (2010) · Zbl 1346.76011 · doi:10.1007/s00205-009-0278-x
[20] Lin, F.; Wang, C., Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372, 18 (2014) · Zbl 1353.76004 · doi:10.1098/rsta.2013.0361
[21] Lin, F.; Wang, C., Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Commun. Pure Appl. Math., 69, 1532-1571 (2016) · Zbl 1349.35299 · doi:10.1002/cpa.21583
[22] Lin, F.; Wang, C., The Analysis of Harmonic Maps and their Heat Flows (2008), Singapore: World Scientific Publishing Co. Pvt. Ltd, Singapore · Zbl 1203.58004
[23] Simon, J., Compact sets in the space \(L^p(O.T;B)\), Ann. Mat. Pure Appl., 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[24] Sonnet, A.; Virga, E., Dissipative Ordered Fluids: Theories for Liquid Crystals (2012), New York: Springer, New York · Zbl 1258.76002
[25] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (2001), Providence: American Mathematical Society, Providence · Zbl 0981.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.