×

Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. (English) Zbl 1441.34006

Summary: In this article, we are concerned with the existence of mild solutions as well as approximate controllability for a class of fractional evolution equations with nonlocal conditions in Banach spaces. Sufficient conditions for the existence of mild solutions and approximate controllability for the desired problem are presented by introducing a new Green’s function and constructing a control function involving Gramian controllability operator. The discussions are based on Schauder’s fixed point theorem as well as the theory of \(\alpha\)-order solution operator and \(\alpha\)-order resolvent operator. An example is given to illustrate the feasibility of our theoretical results.

MSC:

34A08 Fractional ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34H05 Control problems involving ordinary differential equations
93B05 Controllability
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differential Equations246, No 10 (2009), 3834-3863. · Zbl 1171.34052
[2] R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solutions for fractional differential equations with uncertainly. Nonlinear Anal. 72, No 6 (2010), 2859-2862. · Zbl 1188.34005
[3] D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69, No 11 (2008), 3692-3705. · Zbl 1166.34033
[4] E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces. PhD Thesis, Department of Mathematics, Eindhoven University of Technology (2001). · Zbl 0989.34002
[5] A. Boucherif, Semilinear evolution inclutions with nonlocal conditions. Appl. Math. Letters22, No 8 (2009), 1145-1149. · Zbl 1173.34338
[6] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, No 2 (1991), 494-505. · Zbl 0748.34040
[7] L. Byszewski, Existence and uniqueness of a classical solutions to a functional-differential abstract nonlocal Cauchy problem. J. Math. Appl. Stoch. Anal. 12, No 1 (1999), 91-97. · Zbl 0934.34067
[8] Y.K. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20, No 4 (2017), 963-987; ; https://www.degruyter.com/view/j/fca.2017.20.issue-4/issue-files/fca.2017.20.issue-4.xml. · Zbl 1369.93081 · doi:10.1515/fca-2017-0050
[9] P. Chen, Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions. Z. Angew. Math. Phys. 65, No 4 (2014), 711-728. · Zbl 1304.34006
[10] C. Chen, M. Li, On fractional resolvent operator functions. Semigroup Forum80, No 1 (2010), 121-142. · Zbl 1185.47040
[11] C. Chen, M. Li, F.B. Li, On boundary values of fractional resolvent families. J. Math. Anal. Appl. 384, No 2 (2011), 453-467. · Zbl 1230.47071
[12] P. Chen, X. Zhang, Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1507-1526; ; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml. · Zbl 1353.35303 · doi:10.1515/fca-2016-0078
[13] P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, No 5 (2017), 794-803. · Zbl 1375.34115
[14] P. Chen, X. Zhang, Y. Li, Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr. J. Math. 14, No 6 (2017), Art. 226. · Zbl 1387.35604
[15] P. Chen, X. Zhang, Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17, No 5 (2018), 1975-1992. · Zbl 1397.35331
[16] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, No 2 (1993), 630-637. · Zbl 0798.35076
[17] M.M. EI-Borai, Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals14, No 3 (2002), 433-440. · Zbl 1005.34051
[18] K. Ezzinbi, X. Fu, K. Hilal, Existence and regularity in the α-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal. 67, No 5 (2007), 1613-1622. · Zbl 1119.35105
[19] Z. Fan, Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232, No 1 (2014), 60-67. · Zbl 1410.45011
[20] Z. Fan, Q. Dong, G. Li, Approximate controllability for semilinear composite fractional relaxation equations. Fract. Calc. Appl. Anal. 19, No 1 (2016), 267-284; ; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml. · Zbl 1331.93021 · doi:10.1515/fca-2016-0015
[21] X. Fu, Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evol. Equ. Control Theory6, No 4 (2017), 517-534. · Zbl 1381.34097
[22] H. Gou, B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, No 1 (2017), 204-214. · Zbl 1473.34046
[23] J. Jia, J. Peng, K. Li, Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13, No 2 (2014), 605-621. · Zbl 1280.26013
[24] R.E. Kalman, Controllablity of linear dynamical systems. Contrib. Diff. Equ. 1, No 1 (1963), 189-213. · Zbl 0151.13303
[25] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam (2006). · Zbl 1092.45003
[26] M. Li, C. Chen, F.B. Li, On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 259, No 10 (2010), 2702-2726. · Zbl 1203.47021
[27] K. Li, J. Peng, Fractional abstract Cauchy problems. Integr. Equ. Oper. Theory70, No 3 (2011), 333-361. · Zbl 1242.34008
[28] K. Li, J. Peng, Fractional resolvents and fractional evolution equations. Appl. Math. Lett. 25, No 5 (2012), 808-812. · Zbl 1253.34016
[29] K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263, No 2 (2012), 476-510. · Zbl 1266.47066
[30] T. Lian, Z. Fan, G. Li, Approximate controllability of semilinear fractional differential systems of order 1 < q < 2 via resolvent operators. Filomat31, No 18 (2017), 5769-5781. · Zbl 1499.34391
[31] J. Liang, H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254, No 1 (2015), 20-29. · Zbl 1410.93022
[32] Z. Liu, X. Li, D. Motreanu, Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces. SIAM J. Control Optim. 53, No 5 (2015), 3228-3244. · Zbl 1330.47074
[33] Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53, No 4 (2015), 1920-1933. · Zbl 1326.34019
[34] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). · Zbl 0918.34010
[35] T. Poinot, J.C. Trigeassou, Identification of fractional systems using an output-error technique. Nonl. Dynamics38, No 1 (2004), 133-154. · Zbl 1134.93324
[36] J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser Verlag, Basel (1993). · Zbl 0793.45014
[37] Y.A. Rossikhin, M.V. Shitikova, Application of fractional dericatives to the analysis of damped vibrations of viscoelastic single mass system. Acta. Mech. 120, No 1 (1997), 109-125. · Zbl 0901.73030
[38] X. Shu, Y. Shi, A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, No 1 (2016), 465-476. · Zbl 1410.34031
[39] M.S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. on Industrial Electronics11, No 11 (2008), 4094-4101.
[40] D. Valério, M.D. Ortigueira, J.A. Tenreiro Machado, A.M. Lopes, Continuous-time fractional linear systems: steady-state responses. In: Handbook of Fractional Calculus with Applications, Vol. 6, De Gruyter, Berlin (2019), 149-174.
[41] R.N. Wang, D.H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations252, No 1 (2012), 202-235. · Zbl 1238.34015
[42] J. Wang, M. Fec̆kan, Y. Zhou, Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evol. Equ. Control Theory6, No 3 (2017), 471-486. · Zbl 06744040
[43] R. Wang, T.J. Xiao, J. Liang, A note on the fractional Cauchy problems with nonlocal conditions. Appl. Math. Letters24, No 8 (2011), 1435-1442. · Zbl 1251.45008
[44] J. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, No 1 (2011), 263-272. · Zbl 1214.34010
[45] J. Wang, Y. Zhou, M. Fec̆kan, Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74, No 4 (2013), 685-700. · Zbl 1268.34034
[46] S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. on Dielectrics and Electrical Insulation1, No 5 (1994), 826-839.
[47] T.J. Xiao, J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems. Nonlinear Anal. 63, No 5-7 (2005), 225-232. · Zbl 1159.35383
[48] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, No 3 (2010), 1063-1077. · Zbl 1189.34154
[49] Y. Zhou, V. Vijayakumar, R. Murugesu, Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory4, No 4 (2015), 507-524. · Zbl 1335.34096
[50] Y. Zhou, V. Vijayakumar, C. Ravichandran, R. Murugesu, Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory18, No 2 (2017), 773-798. · Zbl 1383.34098
[51] B. Zhu, L. Liu, Y. Wu, Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations. Fract. Calc. Appl. Anal. 20, No 6 (2017), 1338-1355; ; https://www.degruyter.com/view/j/fca.2017.20.issue-6/issue-files/fca.2017.20.issue-6.xml. · Zbl 1392.45016 · doi:10.1515/fca-2017-0071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.