×

Partial affine system-based frames and dual frames. (English) Zbl 1440.42157

Summary: In this paper, we introduce the notion of partial affine system that is a subset of an affine system. It has potential applications in signal analysis. A general affine system has been extensively studied; however, the partial one has not. The main focus of this paper is on partial affine system-based frames and dual frames. We obtain a necessary condition and a sufficient condition for a partial affine system to be a frame and present a characterization of partial affine system-based dual frames. Some examples are also provided.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] BoggessA, NarcowichFJ. A First Course in Wavelets with Fourier Analysis. John Wiley and Sons, Inc: Hoboken, NJ, 2009. · Zbl 1185.42001
[2] BownikM. A characterization of affine dual frames in \(L^2(\mathbb{R}^n)\). Appl Comput Harmon Anal. 2000;8(2):203‐221. · Zbl 0961.42018
[3] CalogeroA. A characterization of wavelets on general lattices. J Geom Anal. 2000;10(4):597‐622. · Zbl 1057.42025
[4] ChristensenO. An Introduction to Frames and Riesz Bases (2nd edn.) Boston: Birkhäuser, 2016. · Zbl 1348.42033
[5] ChristensenO, DengB, HeilC. Density of Gabor frames. Appl Comput Harmon Anal. 1999;7(3):292‐304. · Zbl 0960.42007
[6] ChuiC. An Introduction to Wavelets. Academic Press: Boston, 1992. · Zbl 0925.42016
[7] ChuiC, ShiX. Inequalities of Littlewood‐Paley type for frames and wavelets. SIAM J Math Anal. 1993;24(1):263‐277. · Zbl 0766.41013
[8] DaubechiesI. Ten Lectures on Wavelets. SIAM: Philadelphia, 1992.
[9] FrazierM, GarrigsG, WangK, WeissG. A characterization of functions that generate wavelet and related expansion. J Fourier Anal Appl. 1997;3:883‐906. · Zbl 0896.42022
[10] HanB. On dual wavelet tight frames. Appl Comput Harmon Anal. 1997;4(4):380‐413. · Zbl 0880.42017
[11] HernándezE, WeissG. A First Course on Wavelets. CRC Press: Boca Raton, FL, 1996. · Zbl 0885.42018
[12] KahaneJ, Lemarie‐RieussetPG. Fourier Series and Wavelets. Gordon and Breach Publishers: France, 1994.
[13] KaiserG, FriendlyA. Guide to Wavelets. Birkhäuser: Berlin, Boston, 1994. · Zbl 0839.42011
[14] RonA, ShenZ. Affine systems in \(L^2(\mathbb{R}^d)\) II. Dual systems. J Fourier Anal Appl. 1997;3(5):617‐637. · Zbl 0904.42025
[15] ShiX, ChenF. Necessary condition and sufficient condition for affine frames. Sci China Ser A Math. 2005;48(10):1369‐1378. · Zbl 1133.42047
[16] SunW, ZhouX. Irregular wavelet frames. Sci China Ser A Math. 2000;43(2):122‐127. · Zbl 1038.42039
[17] SunW, ZhouX. Irregular wavelet/Gabor frames. Appl Comput Harmon Anal. 2002;13(1):63‐76. · Zbl 1016.42021
[18] SunW, ZhouX. Density and stability of wavelet frames. Appl Comput Harmon Anal. 2003;15(2):117‐133. · Zbl 1028.42023
[19] SunW, ZhouX. Density of irregular wavelet frames. Proc Am Math Soc. 2004;132(8):2377‐2387. · Zbl 1046.42028
[20] GuQ, HanD. Wavelet frames for (not necessarily reducing) affine subspaces. Appl Comput Harmon Anal. 2009;27(1):47‐54. · Zbl 1169.42017
[21] GuQ, HanD. Wavelet frames for (not necessarily reducing) affine subspaces II: The structure of affine subspaces. J Funct Anal. 2011;260(6):1615‐1636. · Zbl 1211.42032
[22] DaiX, DiaoY, GuQ. Subspaces with normalized tight frame wavelets in \(\mathbb{R} \). Proc Am Math Soc. 2002;130(6):1661‐1667. · Zbl 1004.42024
[23] DaiX, DiaoY, GuQ, HanD. Wavelets with frame multiresolution analysis. J Fourier Anal Appl. 2003;9(1):39‐48. · Zbl 1030.42028
[24] DaiX, LarsonD, SpeegleD. Wavelet sets in \(\mathbb{R}^n\). J Fourier Anal Appl. 1997;3(4):451‐456. · Zbl 0881.42023
[25] DaiX, LuS. Wavelets in subspaces. Mich Math J. 1996;43(1):81‐98. · Zbl 0885.42019
[26] LorentzR, MadychW, SahakianA. Translation and dilation invariant subspaces of \(L^2(\mathbb{R})\) and mutiresolution analyses. Appl Comput Harmon Anal. 1998;5(4):375‐388. · Zbl 0926.42020
[27] LorentzRA, MadychW. 1998. On the closure of the union of nested subspaces of \(L^2(\mathbb{R}^d)\), in: Approximation Theory IX, Nashville, TN, 1998. In Innov Appl Math, vol. 2: Nashville, TN;197‐204. · Zbl 0936.42025
[28] LorentzRA, SahakianAA. Subspaces generated by wavelet systems. Math Notes. 1998;63(1‐2):260‐263. · Zbl 1055.42508
[29] DaiX, DiaoY, GuQ, HanD. Frame wavelets in subspaces of \(L^2(\mathbb{R}^d)\). Proc Am Math Soc. 2002;130(11):3259‐3267. · Zbl 1004.42025
[30] HansV. Frames of wavelets in Hardy space. Analysis. 1995;15(4):405‐421. · Zbl 0837.42015
[31] SeipK. Regular sets of sampling and interpolation for weighted Bergman spaces. Proc Am Math Soc. 1993;117(1):213‐220. · Zbl 0763.30014
[32] DaiX, DiaoY, GuQ, HanD. The existence of subspace wavelet sets. J Comput Appl Math. 2003;155(1):83‐90. · Zbl 1016.42020
[33] LiYZ, ZhouFY. GMRA‐based construction of framelets in reducing subspaces of \(L^2(\mathbb{R}^d)\). Int J Wavelets Multiresolut Inf Process. 2011;9(2):237‐268. · Zbl 1246.42035
[34] ZhouFY, LiYZ. Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of \(L^2(\mathbb{R}^d)\). Kyoto J Math. 2010;50(1):83‐99. · Zbl 1228.42044
[35] ZhouFY, LiYZ. Generalized multiresolution structures in reducing subspaces of \(L^2(\mathbb{R}^d)\). Sci China Math. 2013;56(3):619‐638. · Zbl 1279.42046
[36] LiYZ, ZhouFY. Affine and quasi‐affine dual wavelet frames in reducing subspaces of \(L^2(\mathbb{R}^d)\). Acta Math Sin Chin Ser. 2010;53(3):551‐562. · Zbl 1224.42096
[37] JiaHF, LiYZ. Refinable function‐based construction of weak (quasi‐)affine bi‐frames. J Fourier Anal Appl. 2014;20(6):1145‐1170. · Zbl 1311.42081
[38] JiaHF, LiYZ. Weak (quasi‐)affine bi‐frames for reducing subspaces of \(L^2(\mathbb{R}^d)\). Sci China Math. 2015;58(5):1005‐1022. · Zbl 1348.42038
[39] OlevskiiA. Completeness in \(L^2(\mathbb{R})\) of almost integer translates. C R Acad Sci Paris Sér I Math. 1997;324(9):987‐991. · Zbl 0897.46016
[40] OlsonTE, ZalikRA. 1992. Nonexistence of a Riesz basis of translates, in Approximation Theory, pp. 401‐408. In Lecture Notes in Pure and Applied Math, vol. 138: Dekker, New York. · Zbl 0764.42020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.