×

Phase-field modeling of crack propagation in multiphase systems. (English) Zbl 1439.74371

Summary: Modeling of crack propagation in materials has long been a challenge in solid-state physics and materials science. The phase-field method has now established as one of the tools for the description of crack propagation. The applied models are thermodynamically consistent and predict crack propagation in homogeneous materials under the consideration of different loading types, multiple physical fields and geometrical nonlinearities. Even dynamic loading processes are studied, including plastic effects. A multiphase-field model for crack propagation, which is indispensable to describe crack propagation on a mesoscopic length scale, is still missing. In this work, we overcome this deficiency and combine a crack propagation approach, which is based on Griffith’s theory, with an established multiphase-field model for phase transformation.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Marder, M.; Fineberg, J., How things break, Phys. Today, 49, 9, 24 (1996)
[2] Lawn, B., Fracture of Brittle Solids (1993), Cambridge University Press: Cambridge University Press New York
[3] Freund, L. B., Dynamic Fracture Mechanics (1998), Cambridge University Press: Cambridge University Press New York · Zbl 0712.73072
[4] Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 221, 582-593, 163-198 (1921) · Zbl 1454.74137
[5] Chen, L.-Q., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 1, 113-140 (2002)
[6] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[7] Karma, A.; Kessler, D.; Levine, H., Phase-Field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 4, 3-6 (2001)
[8] Bourdin, B.; Francfort, G. a.; Marigo, J.-J., The Variational Approach to Fracture, Vol. 91 (2008), Springer: Springer Netherlands, Dordrecht · Zbl 1176.74018
[9] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 18, 3625-3634 (2010)
[10] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[11] Hofacker, M.; Miehe, C., A phase field model for ductile to brittle failure mode transition, PAMM, 12, 1, 173-174 (2012)
[12] Duda, F. P.; Ciarbonetti, A.; Sánchez, P. J.; Huespe, A. E., A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269-296 (2015)
[13] M. Ambati, L. De Lorenzis, Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements, Comput. Methods Appl. Mech. Eng. http://dx.doi.org/10.1016/j.cma.2016.02.017; M. Ambati, L. De Lorenzis, Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements, Comput. Methods Appl. Mech. Eng. http://dx.doi.org/10.1016/j.cma.2016.02.017 · Zbl 1439.74338
[14] Miehe, C.; Schänzel, L.-M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[15] Miehe, C.; Hofacker, M.; Schänzel, L.-M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[16] Schneider, D.; Selzer, M.; Bette, J.; Rementeria, I.; Vondrous, A.; Hoffmann, M. J.; Nestler, B., Phase-Field modeling of diffusion coupled crack propagation processes, Adv. Energy Mater., 16, 2, 142-146 (2014)
[17] Spatschek, R.; Müller-Gugenberger, C.; Brener, E.; Nestler, B., Phase field modeling of fracture and stress-induced phase transitions, Phys. Rev. E, 75, 6, 1-14 (2007)
[18] Schneider, D.; Schmid, S.; Selzer, M.; Böhlke, T.; Nestler, B., Small strain elasto-plastic multiphase-field model, Comput. Mech., 55, 1, 27-35 (2015) · Zbl 1314.74013
[19] Abdollahi, A.; Arias, I., Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals, Int. J. Fract., 174, 1, 3-15 (2012)
[20] Oshima, K.; Takaki, T.; Muramatsu, M., Development of multi-phase-field crack model for crack propagation in polycrystal, Internat. J. Comput. Mater. Sci. Eng., 03, 02, 1450009 (2014)
[21] Hossain, M.; Hsueh, C.-J.; Bourdin, B.; Bhattacharya, K., Effective toughness of heterogeneous media, J. Mech. Phys. Solids, 71, 15-32 (2014)
[22] Nestler, B.; Garcke, H.; Stinner, B., Multicomponent alloy solidification: Phase-field modeling and simulations, Phys. Rev. E, 71, 4, Article 041609 pp. (2005)
[23] Cahn, J. W.; Allen, S. M., A microscopic theory for domain wall motion and its experimental verification in Fe-AI alloy domain growth kinetics, J. Phys. Colloq., 38, C7 (1977), C7-51-C7-54. http://dx.doi.org/10.1051/jphyscol:1977709
[24] Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, 1, Article 014301 pp. (2014), arXiv:1310.0501
[25] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[26] Hötzer, J.; Tschukin, O.; Said, M. B.; Berghoff, M.; Jainta, M.; Barthelemy, G.; Smorchkov, N.; Schneider, D.; Selzer, M.; Nestler, B., Calibration of a multi-phase field model with quantitative angle measurement, J. Mater. Sci., 51, 4, 1788-1797 (2016)
[27] Moelans, N., A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems, Acta Mater., 59, 3, 1077-1086 (2011)
[28] Steinbach, I.; Pezzolla, F., A generalized field method for multiphase transformations using interface fields, Physica D, 134, 4, 385-393 (1999) · Zbl 0984.80006
[29] Ankit, K.; Mukherjee, R.; Mittnacht, T.; Nestler, B., Deviations from cooperative growth mode during eutectoid transformation: Insights from a phase-field approach, Acta Mater., 81, 204-210 (2014), arXiv:arXiv:1408.1571v1
[30] Kim, S. G.; Kim, D. I.; Kim, W. T.; Park, Y. B., Computer simulations of two-dimensional and three-dimensional ideal grain growth, Phys. Rev. E (3), 74, 6 Pt 1, Article 061605 pp. (2006)
[31] Nestler, B.; Reichert, M.; Selzer, M., Massive multi-phase-field simulations: methods to compute large grain system, (Proceedings of the 11th International Conference on Aluminium Alloys (2008)), 1251-1255
[32] Vondrous, A.; Bienger, P.; Schreijäg, S.; Selzer, M.; Schneider, D.; Nestler, B.; Helm, D.; Mönig, R., Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production, Comput. Mech., 55, 2, 439-452 (2015)
[33] Hötzer, J.; Jainta, M.; Steinmetz, P.; Nestler, B.; Dennstedt, A.; Genau, A.; Bauer, M.; Köstler, H.; Rüde, U., Large scale phase-field simulations of directional ternary eutectic solidification, Acta Mater., 93, 194-204 (2015)
[34] Hötzer, J.; Steinmetz, P.; Jainta, M.; Schulz, S.; Kellner, M.; Nestler, B.; Genau, A.; Dennstedt, A.; Bauer, M.; Köstler, H.; Rüde, U., Phase-field simulations of spiral growth during directional ternary eutectic solidification, Acta Mater., 106, 249-259 (2016)
[35] Steinmetz, P.; Yabansu, Y. C.; Hötzer, J.; Jainta, M.; Nestler, B.; Kalidindi, S. R., Analytics for microstructure datasets produced by phase-field simulations, Acta Mater., 103, 192-203 (2016)
[36] Steinmetz, P.; Hötzer, J.; Kellner, M.; Dennstedt, A.; Nestler, B., Large-scale phase-field simulations of ternary eutectic microstructure evolution, Comput. Mater. Sci., 117, 205-214 (2016)
[37] Bauer, M.; Rüde, U.; Hötzer, J.; Jainta, M.; Steinmetz, P.; Berghoff, M.; Schornbaum, F.; Godenschwager, C.; Köstler, H.; Nestler, B., Massively parallel phase-field simulations for ternary eutectic directional solidification, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC’15 (2015), ACM Press: ACM Press New York, USA), 1-12
[38] Schmitt, R.; Kuhn, C.; Skorupski, R.; Smaga, M.; Eifler, D.; Müller, R., A combined phase field approach for martensitic transformations and damage, Arch. Appl. Mech., 85, 9-10, 1459-1468 (2015) · Zbl 1341.74144
[39] S. Schmid, D. Schneider, C. Herrmann, M. Selzer, B. Nestler, A Multiscale approach for thermo-mechanical simulations of loading courses in cast iron brake discs, Internat. J. Multiscale Comput. Eng. http://dx.doi.org/10.1615/IntJMultCompEng.2015014764; S. Schmid, D. Schneider, C. Herrmann, M. Selzer, B. Nestler, A Multiscale approach for thermo-mechanical simulations of loading courses in cast iron brake discs, Internat. J. Multiscale Comput. Eng. http://dx.doi.org/10.1615/IntJMultCompEng.2015014764
[40] Schneider, D.; Tschukin, O.; Choudhury, A.; Selzer, M.; Böhlke, T.; Nestler, B., Phase-field elasticity model based on mechanical jump conditions, Comput. Mech., 55, 5, 887-901 (2015) · Zbl 1329.74027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.