×

Congruence primes for automorphic forms on unitary groups and applications to the arithmetic of Ikeda lifts. (English) Zbl 1439.11119

Author’s abstract: In this paper we provide a sufficient condition for a prime to be a congruence prime for an automorphic form \(f\) on the unitary group \(U(n, n)(\mathbb A_F)\) for a large class of totally real fields \(F\) via a divisibility of a special value of the standard \(L\)-function associated to \(f\). We also study \(l\)-adic properties of the Fourier coefficients of an Ikeda lift \(I_\phi\) (of an elliptic modular form \(\phi\)) on \(U(n, n)(\mathbb A_{\mathbb Q})\), proving that they are \(l\)-adic integers which do not all vanish modulo \(l\). Finally we combine these results to show that the condition of \(l\) being a congruence prime for \(I_\phi\) is controlled by the \(l\)-divisibility of a product of special values of the symmetric square \(L\)-function of \(\phi\). We close the paper by computing an example when our main theorem applies.

MSC:

11F33 Congruences for modular and \(p\)-adic modular forms
11F30 Fourier coefficients of automorphic forms
11F32 Modular correspondences, etc.
11F55 Other groups and their modular and automorphic forms (several variables)

Software:

SageMath

References:

[1] M. Agarwal and J. Brown, On the Bloch-Kato conjecture for elliptic modular forms of square-free level, Math. Z. 276 (2014), no. 3, 889-924. · Zbl 1302.11024 · doi:10.1007/s00209-013-1226-x
[2] M. Agarwal and K. Klosin, Yoshida lifts and the Bloch-Kato conjecture for the convolution \(L\)-function, J. Number Theory 133 (2013), no. 8, 2496-2537. · Zbl 1294.11066 · doi:10.1016/j.jnt.2013.01.009
[3] B. Balasubramanyam and A. Raghuram, Special values of adjoint \(L\)-functions and congruences for automorphic forms on \(\text{GL}(n)\) over a number field, Amer. J. Math. 139 (2017), no. 3, 641-679. · Zbl 1498.11138 · doi:10.1353/ajm.2017.0017
[4] T. Berger, On the Eisenstein ideal for imaginary quadratic fields, Compos. Math. 145 (2009), no. 3, 603-632. · Zbl 1247.11081 · doi:10.1112/S0010437X09003984
[5] S. Böcherer, N. Dummigan, and R. Schulze-Pillot, Yoshida lifts and Selmer groups, J. Math. Soc. Japan 64 (2012), no. 4, 1353-1405. · Zbl 1276.11069 · doi:10.2969/jmsj/06441353
[6] T. Bouganis, On the algebraicity of special \({L}\)-values of Hermitian modular forms, Doc. Math. 20 (2015), 1293-1329. · Zbl 1342.11054
[7] J. Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math. 143 (2007), no. 2, 290-322. · Zbl 1172.11015 · doi:10.1112/S0010437X06002466
[8] J. Brown, On the cuspidality of pullbacks of Siegel Eisenstein series and applications to the Bloch-Kato conjecture, Int. Math. Res. Not. IMRN 2011, no. 7, 1706-1756. · Zbl 1285.11075
[9] J. Brown and R. Keaton, Congruence primes for Ikeda lifts and the Ikeda ideal, Pacific J. Math. 274 (2015), no. 1, 27-52. · Zbl 1396.11068 · doi:10.2140/pjm.2015.274.27
[10] D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0868.11022
[11] H. Darmon, F. Diamond, and R. Taylor, “Fermat’s last theorem” in Current Developments in Mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, 1-154. · Zbl 0877.11035
[12] T. Dokchitser, Computing special values of motivic \(L\)-functions, Exp. Math. 13 (2004), no. 2, 137-149. · Zbl 1139.11317 · doi:10.1080/10586458.2004.10504528
[13] N. Dummigan, T. Ibukiyama, and H. Katsurada, Some Siegel modular standard \(L\)-values, and Shafarevich-Tate groups, J. Number Theory 131 (2011), no. 7, 1296-1330. · Zbl 1254.11046 · doi:10.1016/j.jnt.2011.01.012
[14] H. Hida, Congruence of cusp forms and special values of their zeta functions, Invent. Math. 63 (1981), no. 2, 225-261. · Zbl 0459.10018 · doi:10.1007/BF01393877
[15] H. Hida, On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math. 64 (1981), no. 2, 221-262. · Zbl 0472.10028 · doi:10.1007/BF01389169
[16] H. Hida, Modules of congruence of Hecke algebras and \(L\)-functions associated with cusp forms, Amer. J. Math. 110 (1988), no. 2, 323-382. · Zbl 0645.10029 · doi:10.2307/2374505
[17] H. Hida, Galois representations and the theory of p-adic Hecke algebras, Sugaku Expositions 2 (1989), no. 1, 75-102. · Zbl 0686.10023
[18] H. Hida, Elementary Theory of \(L\)-functions and Eisenstein Series, London Math. Soc. Stud. Texts 26, Cambridge Univ. Press, Cambridge, 1993. · Zbl 0942.11024
[19] H. Hida, Modular Forms and Galois Cohomology, Cambridge Stud. Adv. Math. 69, Cambridge Univ. Press, Cambridge, 2000. · Zbl 0952.11014
[20] H. Hida, \(p\)-adic Automorphic Forms on Shimura Varieties, Springer Monogr. Math., Springer, New York, 2004. · Zbl 1055.11032
[21] H. Hida, “Arithmetic of adjoint \(L\)-values” in \(p\)-adic Aspects of Modular Forms, World Sci., Hackensack, NJ, 2016, 185-236. · Zbl 1418.11084
[22] T. Ikeda, On the lifting of Hermitian modular forms, Compos. Math. 144 (2008), no. 5, 1107-1154. · Zbl 1155.11025 · doi:10.1112/S0010437X08003643
[23] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, Amer. Math. Soc., Providence, 1997. · Zbl 0905.11023
[24] H. Katsurada, Congruence of Siegel modular forms and special values of their standard zeta functions, Math. Z. 259 (2008), no. 1, 97-111. · Zbl 1173.11029 · doi:10.1007/s00209-007-0213-5
[25] H. Katsurada, Congruence between Duke-Imamoglu-Ikeda lifts and non-Duke-Imamoglu-Ikeda lifts, Comment. Math. Univ. St. Pauli 64 (2015), no. 2, 109-129. · Zbl 1388.11025
[26] H. Katsurada, On the period of the Ikeda lift for \({U}(m,m)\), Math. Z. 286 (2017), no. 1-2, 141-178. · Zbl 1420.11086 · doi:10.1007/s00209-016-1758-y
[27] K. Klosin, Congruences among modular forms on \({\text{U}}(2,2)\) and the Bloch-Kato conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 1, 81-166. · Zbl 1214.11055
[28] K. Klosin, The Maass space for \(U(2,2)\) and the Bloch-Kato conjecture for the symmetric square motive of a modular form, J. Math. Soc. Japan 67 (2015), no. 2, 797-860. · Zbl 1396.11071 · doi:10.2969/jmsj/06720797
[29] D. Loeffler and S. L. Zerbes, Iwasawa theory for the symmetric square of a modular form, J. Reine. Angew. Math. 752 (2019), 179-210. · Zbl 1430.11149 · doi:10.1515/crelle-2016-0064
[30] K. A. Ribet, A modular construction of unramified \(p\)-extensions of \(\mathbf{Q}(\mu_p)\), Invent. Math. 34 (1976), no. 3, 151-162. · Zbl 0338.12003
[31] K. A. Ribet, “Galois representations attached to eigenforms with Nebentypus” in Modular Functions of One Variable, V (Bonn, 1976), Lecture Notes in Math. 601, Springer, Berlin, 1977, 17-51. · Zbl 0363.10015
[32] SageMath, Sage mathematics software system version 6.10, The Sage Developers, Seattle, WA, 2017, http://www.sagemath.org.
[33] G. Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211-221. · Zbl 0363.10019 · doi:10.1007/BF01391466
[34] G. Shimura, Euler Products and Eisenstein Series, CBMS Reg. Conf. Ser. Math. 93, Amer. Math. Soc., Providence, 1997. · Zbl 0906.11020
[35] G. Shimura, Arithmeticity in the Theory of Automorphic Forms, Math. Surveys Monogr. 82, Amer. Math. Soc., Providence, 2000. · Zbl 0967.11001
[36] C. Skinner, Galois representations associated with unitary groups over \(\mathbb{Q} \), Algebra Number Theory 6 (2012), no. 8, 1697-1717. · Zbl 1294.11080 · doi:10.2140/ant.2012.6.1697
[37] C. Skinner and E. Urban, Sur les déformations \(p\)-adiques de certaines représentations automorphes, J. Inst. Math. Jussieu 5 (2006), no. 4, 629-698. · Zbl 1169.11314 · doi:10.1017/S147474800600003X
[38] C. Skinner and E. Urban, The Iwasawa main conjectures for \(\operatorname{GL}_2 \), Invent. Math. 195 (2014), no. 1, 1-277. · Zbl 1301.11074
[39] J. Sturm, Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math. 102 (1980), no. 2, 219-240. · Zbl 0433.10015 · doi:10.2307/2374237
[40] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), no. 2, 397-419. · Zbl 0979.11027 · doi:10.1215/S0012-7094-99-09811-3
[41] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997. · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.