×

A multinomial autoregressive model for finite-range time series of counts. (English) Zbl 1437.62343

Summary: In this paper, a multinomial autoregressive model for finite-range time series of counts is introduced to analyze the finite-range integer-valued data with more than two states. Basic probabilistic and statistical properties of the model are discussed. The related estimations of the parameters in proposed model are considered using conditional least squares (CLS), weighted conditional least squares (WCLS) and conditional maximum likelihood (CML) methods. The asymptotic properties of the estimators are established. Some simulation studies are conducted to verify the proposed procedure. A real example is analyzed to illustrate the advantages of our model.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H12 Estimation in multivariate analysis
Full Text: DOI

References:

[1] Al-Osh, M. A.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal., 8, 3, 261-275 (1987) · Zbl 0617.62096
[2] Bhat, C. R., Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model, Transp. Res. B, 35, 7, 677-693 (2001)
[3] Billingsley, P., Statistical Inference for Markov Processes (1961), The University of Chicago Press · Zbl 0129.10701
[4] Böckenholt, U., Analyzing multiple emotions over time by autoregressive negative multinomial regression models, J. Amer. Statist. Assoc., 94, 447, 757-765 (1999)
[5] Böckenholt, U., An INAR(1) negative multinomial regression model for longitudinal count data, Psychometrika, 64, 1, 53-67 (1999) · Zbl 1365.62450
[6] Brännäs, K.; Nordström, J., Tourist accommodation effects of festivals, Tour. Econ., 12, 2, 291-302 (2006)
[7] Dow, J. K.; Endersby, J. W., Multinomial probit and multinomial logit: a comparison of choice models for voting research, Elect. Stud., 23, 1, 107-122 (2004)
[8] Hall, P.; Heyde, C. C., Martingale Limit Theory and Its Application (1980), Academic press · Zbl 0462.60045
[9] Hausman, J.; McFadden, D., Specification tests for the multinomial logit model, Econometrica, 1219-1240 (1984) · Zbl 0564.62095
[10] He, Z.; Wang, Z.; Tsung, F.; Shang, Y., A control scheme for autocorrelated bivariate binomial data, Comput. Ind. Eng., 98, 350-359 (2016)
[11] Kang, Y.; Wang, D.; Yang, K., Extended binomial AR(1) processes with generalized binomial thinning operator, Comm. Statist. Theory Methods (2019)
[12] Klimko, L. A.; Nelson, P. I., On conditional least squares estimation for stochastic processes, Ann. Statist., 6, 3, 629-642 (1978) · Zbl 0383.62055
[13] Liu, Y.; Wang, D.; Zhang, H.; Shi, N., Bivariate zero truncated Poisson INAR(1) process, J. Korean Stat. Soc., 45, 2, 260-275 (2016) · Zbl 1343.62065
[14] McKenzie, E., Some simple models for discrete variate time series, Water Resour. Bull., 21, 4, 645-650 (1985)
[15] Möller, T. A.; Silva, M. E.; Weiß, C. H.; Scotto, M. G.; Pereira, I., Self-exciting threshold binomial autoregressive processes, AStA Adv. Stat. Anal., 100, 4, 369-400 (2016) · Zbl 1443.62280
[16] Möller, T. A.; Weiß, C. H.; Kim, H. Y.; Sirchenko, A., Modeling zero inflation in count data time series with bounded support, Methodol. Comput. Appl. Probab., 20, 2, 589-609 (2018) · Zbl 1450.62113
[17] Pedeli, X.; Karlis, D., On composite likelihood estimation of a multivariate INAR (1) model, J. Time Series Anal., 34, 2, 206-220 (2013) · Zbl 1274.62376
[18] Popović, P. M.; Bakouch, H. S., A bivariate integer-valued bilinear autoregressive model with random coefficients, Statist. Papers (2018)
[19] Ristić, M. M.; Nastić, A. S.; Jayakumar, K.; Bakouch, H. S., A bivariate INAR (1) time series model with geometric marginals, Appl. Math. Lett., 25, 3, 481-485 (2012) · Zbl 1239.62109
[20] Ristić, M. M.; Popović, B. V., A new bivariate binomial time series model, Markov Process. Related Fields, 25 (2019) · Zbl 1433.62268
[21] Ross, S. M., Stochastic Processes (1996), John Wiley & Sons: John Wiley & Sons New York · Zbl 0888.60002
[22] Scotto, M. G.; Weiß, C. H.; Silva, M. E.; Pereira, I., Bivariate binomial autoregressive models, J. Multivariate Anal., 125, 233-251 (2014) · Zbl 1283.62188
[23] Steutel, F. W.; Van Harn, K., Discrete analogues of self-decomposability and stability, Ann. Probab., 7, 5, 893-899 (1979) · Zbl 0418.60020
[24] Weiß, C. H., Thinning operations for modeling time series of counts-a survey, AStA Adv. Stat. Anal., 92, 3, 319-341 (2008) · Zbl 1477.62256
[25] Weiß, C. H., Monitoring correlated processes with binomial marginals, J. Appl. Stat., 36, 4, 399-414 (2009) · Zbl 1473.62398
[26] Weiß, C. H., A new class of autoregressive models for time series of binomial counts, Comm. Statist. Theory Methods, 38, 4, 447-460 (2009) · Zbl 1159.62059
[27] Weiß, C. H.; Kim, H. Y., Binomial AR(1) processes: moments, cumulants, and estimation, Statistics, 47, 3, 494-510 (2013) · Zbl 1327.62477
[28] Weiß, C. H.; Pollett, P. K., Binomial autoregressive processes with density-dependent thinning, J. Time Series Anal., 35, 2, 115-132 (2014) · Zbl 1301.62094
[29] Yang, K.; Wang, D.; Li, H., Threshold autoregression analysis for finite-range time series of counts with an application on measles data, J. Stat. Comput. Simul., 88, 3, 597-614 (2018) · Zbl 07192569
[30] Zhang, J.; Wang, D.; Yang, K., A study of RCINAR(1) process with generalized negative binomial marginals, Comm. Statist. Simulation Comput. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.