×

Gain scheduling consensus of multi-agent systems subject to actuator saturation. (English) Zbl 1436.93126

Summary: This paper presents a gain scheduling approach for achieving the consensus tracking of multi-agent systems with actuator saturation. We first construct a series of nesting ellipsoid invariant sets associated with consensus errors. When the consensus errors stay between the two ellipsoid invariant sets, the feedback gains keep constant, but when the consensus errors enter into the smaller ellipsoid invariant set, the feedback gains abruptly become larger. By combining this gain scheduling technique and the parametric Lyapunov equations, we, respectively, design state and output feedback gain scheduling protocols. Their main advantage, in comparison with the fixed case, is that the convergence rate of consensus tracking can be enhanced by scheduling the gain parameters. Numerical simulations verify the effectiveness of theoretical analysis.

MSC:

93D50 Consensus
93A16 Multi-agent systems
93B70 Networked control
93B52 Feedback control
Full Text: DOI

References:

[1] Boyd, S. P.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM · Zbl 0816.93004
[2] Calafiore, G. C.; Abrate, F., Distributed linear estimation over sensor networks, International Journal of Control, 82, 5, 868-882 (2009) · Zbl 1165.93032 · doi:10.1080/00207170802350662
[3] Chu, H. J.; Gao, L. X.; Zhang, W. D., Distributed adaptive containment control of heterogeneous linear multi-agent systems: An output regulation approach, IET Control Theory & Applications, 10, 1, 95-102 (2016) · doi:10.1049/iet-cta.2015.0398
[4] Chu, H. J.; Liu, X. C.; Zhang, W. D.; Cai, Y. Z., Observer-based consensus tracking of multi-agent systems with one-sided Lipschitz nonlinearity, Journal of the Franklin Institute, 353, 7, 1594-1614 (2016) · Zbl 1336.93015 · doi:10.1016/j.jfranklin.2015.10.011
[5] Chu, H. J.; Yuan, J. Q.; Zhang, W. D., Observer-based adaptive consensus tracking for linear multi-agent systems with input saturation, IET Control Theory & Applications, 9, 14, 2124-2131 (2015) · doi:10.1049/iet-cta.2014.1268
[6] Dörfler, F.; Chertkov, M.; Bullo, F., Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences USA, 110, 6, 2005-2010 (2013) · Zbl 1292.94185 · doi:10.1073/pnas.1212134110
[7] Gao, L. X.; Cui, Y. L.; Xu, B. B.; Zhao, Y., Distributed consensus protocol for leader-following multi-agent systems with functional observers, Journal of the Franklin Institute, 352, 11, 5173-5190 (2015) · Zbl 1395.93013 · doi:10.1016/j.jfranklin.2015.08.023
[8] Gao, Y. P.; Wang, L.; Xie, G. M.; Wu, B., Consensus of multi-agent systems based on sampled-data control, International Journal of Control, 82, 12, 2193-2205 (2009) · Zbl 1178.93091 · doi:10.1080/00207170902948035
[9] Gao, L. X.; Xu, B. B.; Li, J.; Zhang, H., Distributed reduced-order observer-based approach to consensus problems for linear multi-agent systems, IET Control Theory & Applications, 9, 5, 784-792 (2015) · doi:10.1049/iet-cta.2013.1104
[10] Ge, X. H.; Yang, F. W.; Han, Q. L., Distributed networked control systems: A brief overview, Information Sciences, 380, 20, 117-131 (2017) · doi:10.1016/j.ins.2015.07.047
[11] Grognard, F.; Sepulchre, R.; Bastin, G., Improving the performance of low-gain designs for bounded control of linear systems, Automatica, 38, 2, 1777-1782 (2002) · Zbl 1011.93532 · doi:10.1016/S0005-1098(02)00086-9
[12] He, J. P.; Cheng, P.; Shi, L.; Chen, J. M., SATS: Secure average-consensus-based time synchronization in wireless sensor networks, IEEE Transactions on Signal Processing, 61, 24, 6387-6400 (2013) · Zbl 1394.94222 · doi:10.1109/TSP.2013.2286102
[13] He, J. P.; Duan, L. J.; Hou, F.; Cheng, P.; Chen, J. M., Multi-period scheduling for wireless sensor networks: A distributed consensus approach, IEEE Transactions on Signal Processing, 63, 7, 1651-1663 (2016) · Zbl 1393.90066 · doi:10.1109/TSP.2015.2394507
[14] Hong, Y. G.; Hu, J. P.; Gao, L. X., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 7, 1177-1182 (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[15] Jameel, A.; Rehan, M.; Hong, K. S.; Iqbal, N., Distributed adaptive consensus control of Lipschitz nonlinear multi-agent systems using output feedback, International Journal of Control, 89, 11, 2336-2234 (2016) · Zbl 1360.93354 · doi:10.1080/00207179.2016.1155755
[16] Li, Z. K.; Duan, Z. S.; Chen, G. R.; Huang, L., Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 1, 2213-2242 (2013)
[17] Li, Z. K.; Wen, G. H.; Duan, Z. S.; Ren, W., Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs, IEEE Transactions on Automatic Control, 60, 4, 1152-1157 (2015) · Zbl 1360.93035 · doi:10.1109/TAC.2014.2350391
[18] Lin, Z. L., Low gain feedback, lecture notes in control and information sciences (1998), London: Springer, London · Zbl 0927.93001
[19] Lin, Z. L.; Saberi, A., Semi-global exponential stabilization of linear systems subject to “input saturation” via linear feedbacks, Systems & Control Letters, 21, 3, 225-239 (1993) · Zbl 0788.93075 · doi:10.1016/0167-6911(93)90033-3
[20] Meng, Z. Y.; Zhao, Z. Y.; Lin, Z. L., On global leader-following consensus of identical linear dynamic systems subject to actuator saturation, Systems & Control Letters, 62, 2, 132-142 (2013) · Zbl 1259.93011 · doi:10.1016/j.sysconle.2012.10.016
[21] Mohammad, A. D.; Mohammad, B. M., Communication free leader-follower formation control of unmanned aircraft systems, Robotics and Autonomous Systems, 80, 6, 69-75 (2016)
[22] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49, 9, 1520-1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[23] Su, H. S.; Chen, S. Z. Q.; Chen, G. R., Robust semi-global coordinated tracking of linear multi-agent systems with input saturation, International Journal of Robust and Nonlinear Control, 25, 14, 2375-2390 (2015) · Zbl 1328.93089 · doi:10.1002/rnc.3210
[24] Su, H. S.; Chen, M. Z. Q.; Lam, J.; Lin, Z., Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback, IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 7, 1881-1889 (2013) · Zbl 1468.93035 · doi:10.1109/TCSI.2012.2226490
[25] Su, H. S.; Chen, M. Z. Q.; Wang, X. F.; Lam, J., Semiglobal observer-based leader-following consensus with input saturation, IEEE Transactions on Industrial Electronics, 61, 6, 2842-2850 (2014) · doi:10.1109/TIE.2013.2275976
[26] Su, H. S.; Jia, G.; Chen, M. Z. Q., Semi-global containment control of multi-agent systems with intermittent input saturation, Journal of the Franklin Institute, 352, 9, 3504-3525 (2015) · Zbl 1395.93023 · doi:10.1016/j.jfranklin.2014.09.006
[27] Wang, B. H.; Wang, J. C.; Zhang, B.; Li, X., Global cooperative control framework for multiagent systems subject to actuator saturation with industrial applications, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2017) · doi:10.1109/TSMC.2016.2573584
[28] Wang, Q. L.; Yu, C. B.; Gao, H. J., Synchronization of identical linear dynamic systems subject to input saturation, Systems & Control Letters, 64, 6, 107-111 (2014) · Zbl 1283.93029 · doi:10.1016/j.sysconle.2013.11.010
[29] Wang, Q. L.; Yu, C. B.; Gao, H. J., Semi-global synchronization of multiple generic linear agents with input saturation, International Journal of Robust and Nonlinear Control, 24, 18, 3239-3254 (2014) · Zbl 1302.93015 · doi:10.1002/rnc.3053
[30] Wang, Q.; Zhou, B.; Duan, G. R., Robust gain scheduled control of spacecraft rendezvous system subject to input saturation, Aerospace Science and Technology, 42, 4, 442-450 (2015) · doi:10.1016/j.ast.2015.02.002
[31] Wang, Q.; Zhou, B.; Wen, C.; Duan, G. R., Output feedback gain scheduled control of actuator saturated linear systems with applications to the spacecraft rendezvous, Journal of the Franklin Institute, 351, 11, 5015-5033 (2014) · Zbl 1307.93332 · doi:10.1016/j.jfranklin.2014.08.009
[32] Yang, A. L.; Naeem, W.; Fei, M. R., Formation stability analysis of unmanned multi-vehicles under interconnection topologies, International Journal of Control, 88, 4, 754-767 (2015) · Zbl 1316.93091 · doi:10.1080/00207179.2014.972465
[33] Yu, W. W.; Chen, G. R.; Cao, M., Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46, 6, 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[34] Zhang, D.; Srinivasan, D.; Yu, L.; Zhang, W. A.; Xing, K., Distributed non-fragile filtering in sensor networks with energy constraints, Information Sciences, 370-371, 20, 695-707 (2016) · Zbl 1429.93396 · doi:10.1016/j.ins.2016.05.006
[35] Zhou, B., Truncated predictor feedback for time-delay systems (2014), Heidelberg: Springer, Heidelberg · Zbl 1306.93003
[36] Zhou, B.; Wang, Q.; Lin, Z. L.; Duan, G. R., Gain scheduled control of linear systems subject to actuator saturation with application to spacecraft rendezvous, IEEE Transactions on Control Systems Technology, 22, 5, 2031-2038 (2014) · doi:10.1109/TCST.2013.2296044
[37] Zhou, B.; Xu, C. C.; Duan, G. R., Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Transactions on Automatic Control, 59, 8, 2264-2270 (2014) · Zbl 1360.93139 · doi:10.1109/TAC.2014.2301573
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.