×

Nudging the particle filter. (English) Zbl 1436.62447

Summary: We investigate a new sampling scheme aimed at improving the performance of particle filters whenever (a) there is a significant mismatch between the assumed model dynamics and the actual system, or (b) the posterior probability tends to concentrate in relatively small regions of the state space. The proposed scheme pushes some particles toward specific regions where the likelihood is expected to be high, an operation known as nudging in the geophysics literature. We reinterpret nudging in a form applicable to any particle filtering scheme, as it does not involve any changes in the rest of the algorithm. Since the particles are modified, but the importance weights do not account for this modification, the use of nudging leads to additional bias in the resulting estimators. However, we prove analytically that nudged particle filters can still attain asymptotic convergence with the same error rates as conventional particle methods. Simple analysis also yields an alternative interpretation of the nudging operation that explains its robustness to model errors. Finally, we show numerical results that illustrate the improvements that can be attained using the proposed scheme. In particular, we present nonlinear tracking examples with synthetic data and a model inference example using real-world financial data.

MSC:

62M20 Inference from stochastic processes and prediction
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G35 Nonparametric robustness

Software:

FinTS

References:

[1] Ades, M.; Van Leeuwen, Pj, An exploration of the equivalent weights particle filter, Q. J. R. Meteorol. Soc., 139, 672, 820-840 (2013)
[2] Ades, M.; Van Leeuwen, Pj, The equivalent-weights particle filter in a high-dimensional system, Q. J. R. Meteorol. Soc., 141, 687, 484-503 (2015)
[3] Anderson, Bdo; Moore, Jb, Optimal Filtering (1979), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0688.93058
[4] Andrieu, C.; Doucet, A.; Holenstein, R., Particle Markov chain Monte Carlo methods, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 72, 3, 269-342 (2010) · Zbl 1411.65020
[5] Atkins, E.; Morzfeld, M.; Chorin, Aj, Implicit particle methods and their connection with variational data assimilation, Mon. Weather Rev., 141, 6, 1786-1803 (2013)
[6] Bain, A.; Crisan, D., Fundamentals of Stochastic Filtering (2009), Berlin: Springer, Berlin · Zbl 1176.62091
[7] Bengtsson, T.; Bickel, P.; Li, B., Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems, Probability and statistics: Essays in Honor of David A. Freedman, 316-334 (2008), Beachwood: Institute of Mathematical Statistics, Beachwood · Zbl 1166.93376
[8] Bernardo, Jm; Smith, Afm, Bayesian Theory (1994), New York: Wiley, New York
[9] Bertsekas, Dp, Dynamic Programming and Optimal Control (2001), Belmont: Athena Scientific, Belmont · Zbl 1083.90044
[10] Bubeck, S., et al.: Convex optimization: algorithms and complexity. Found. Trends \({\textregistered }\) Mach. Learn. 8(3-4), 231-357 (2015) · Zbl 1365.90196
[11] Chopin, N., Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Stat., 32, 6, 2385-2411 (2004) · Zbl 1079.65006
[12] Chorin, Aj; Tu, X., Implicit sampling for particle filters, Proc. Natl. Acad. Sci., 106, 41, 17249-17254 (2009)
[13] Chorin, A.; Morzfeld, M.; Tu, X., Implicit particle filters for data assimilation, Commun. Appl. Math. Comput. Sci., 5, 2, 221-240 (2010) · Zbl 1229.60047
[14] Crisan, D.; Doucet, A.; De Freitas, N.; Gordon, N., Particle filters—a theoretical perspective, Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, 17-41 (2001), New York: Springer, New York · Zbl 1056.93573
[15] Crisan, D.; Doucet, A., A survey of convergence results on particle filtering, IEEE Trans. Signal Process., 50, 3, 736-746 (2002) · Zbl 1369.60015
[16] Crisan, D.; Miguez, J., Uniform convergence over time of a nested particle filtering scheme for recursive parameter estimation in state-space Markov models, Adv. Appl. Probab., 49, 4, 1170-1200 (2017) · Zbl 1432.62320
[17] Crisan, D.; Miguez, J., Nested particle filters for online parameter estimation in discrete-time state-space Markov models, Bernoulli, 24, 4, 3039-3086 (2018) · Zbl 1414.62346
[18] Dahlin, J., Schön, T.B.: Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. arxiv:1511.01707 (2015)
[19] Del Moral, P., Miclo, L.: Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering. In: Azéma J., Ledoux M., Émery M., Yor M. (eds) Séminaire de Probabilités XXXIV. Lecture Notes in Mathematics, Springer, Berlin, vol. 1729, pp. 1-145 (2000) · Zbl 0963.60040
[20] Del Moral, P., Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications (2004), New York: Springer, New York · Zbl 1130.60003
[21] Del Moral, P.; Guionnet, A., Central limit theorem for nonlinear filtering and interacting particle systems, Ann. Appl. Probab., 9, 2, 275-297 (1999) · Zbl 0938.60022
[22] Del Moral, P.; Guionnet, A., On the stability of interacting processes with applications to filtering and genetic algorithms, Ann. Inst. Henri Poincare (B) Probab. Stat., 37, 2, 155-194 (2001) · Zbl 0990.60005
[23] Douc, R.; Moulines, E., Limit theorems for weighted samples with applications to sequential Monte Carlo methods, Ann. Stat., 36, 5, 2344-2376 (2008) · Zbl 1155.62056
[24] Douc, R.; Moulines, E.; Olsson, J., Optimality of the auxiliary particle filter, Probab. Math. Stat., 29, 1, 1-28 (2009) · Zbl 1176.62092
[25] Doucet, A.; Godsill, S.; Andrieu, C., On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10, 3, 197-208 (2000)
[26] Doucet, A.; De Freitas, N.; Gordon, N.; Doucet, A.; De Freitas, N.; Gordon, N., An introduction to sequential Monte Carlo methods, Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, 3-14 (2001), New York: Springer, New York · Zbl 1056.93576
[27] Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEEE Proceedings F (Radar and Signal Processing), vol. 140, pp. 107-113. IET (1993)
[28] Hoke, Je; Anthes, Ra, The initialization of numerical models by a dynamic-initialization technique, Month. Weather Rev., 104, 12, 1551-1556 (1976)
[29] Johansen, Am; Doucet, A., A note on auxiliary particle filters, Stat. Probab. Lett., 78, 12, 1498-1504 (2008) · Zbl 1152.62066
[30] Kitagawa, G., Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 1, 1-25 (1996)
[31] Künsch, Hr, Recursive Monte Carlo filters: algorithms and theoretical analysis, Ann. Stat., 33, 5, 1983-2021 (2005) · Zbl 1086.62106
[32] Liu, Js; Chen, R., Sequential Monte Carlo methods for dynamic systems, J. Am. Stat. Assoc., 93, 443, 1032-1044 (1998) · Zbl 1064.65500
[33] Malanotte-Rizzoli, P.; Holland, Wr, Data constraints applied to models of the ocean general circulation. Part I: the steady case., J. Phys. Oceanogr., 16, 10, 1665-1682 (1986)
[34] Malanotte-Rizzoli, P.; Holland, Wr, Data constraints applied to models of the ocean general circulation. Part II: the transient, eddy-resolving case, J. Phys. Oceanogr., 18, 8, 1093-1107 (1988)
[35] Míguez, J.; Crisan, D.; Djurić, Pm, On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization, Stat. Comput., 23, 1, 91-107 (2013) · Zbl 1322.65004
[36] Oreshkin, Bn; Coates, Mj, Analysis of error propagation in particle filters with approximation, Ann. Appl. Probab., 21, 6, 2343-2378 (2011) · Zbl 1231.62174
[37] Pitt, Mk; Shephard, N., Filtering via simulation: auxiliary particle filters, J. Am. Stat. Assoc., 94, 446, 590-599 (1999) · Zbl 1072.62639
[38] Robert, Cp, The Bayesian Choice (2007), New York: Springer, New York · Zbl 1129.62003
[39] Shiryaev, An, Probability (1996), Berlin: Springer, Berlin
[40] Snyder, C.; Bengtsson, T.; Bickel, P.; Anderson, J., Obstacles to high-dimensional particle filtering, Month. Weather Rev., 136, 12, 4629-4640 (2008)
[41] Tsay, Rs, Analysis of Financial Time Series (2005), New York: Wiley, New York · Zbl 1086.91054
[42] Van Leeuwen, Pj, Particle filtering in geophysical systems, Month. Weather Rev., 137, 12, 4089-4114 (2009)
[43] Van Leeuwen, Pj, Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Q. J. R. Meteorol. Soc., 136, 653, 1991-1999 (2010)
[44] Zou, X.; Navon, I.; Ledimet, F., An optimal nudging data assimilation scheme using parameter estimation, Q. J. R. Meteorol. Soc., 118, 508, 1163-1186 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.