×

A monolithic mixed finite element method for a fluid-structure interaction problem. (English) Zbl 1433.74100

Summary: We propose a numerical method for modeling the interaction of a Stokes fluid and a linear elastic solid. The model problem is expressed in the stress-displacement formulation for the linear elastodynamics in the solid region and the stress-velocity formulation for the Stokes equations in the fluid region. These two systems are coupled in such a way that the interface conditions are imposed naturally in the resulting weak formulation, which is based on the Hellinger-Reissner variational principle. For the time discretization, we use a three-level scheme for each time step, with an exception at the first time step. We provide a priori error analysis for fully-discrete, nonconforming mixed finite element methods and show some numerical results to confirm our theoretical results.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D07 Stokes and related (Oseen, etc.) flows
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Du, Q.; Gunzburger, M. D.; Hou, L. S.; Lee, J., Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9, 3, 633-650 (2003) · Zbl 1039.35076
[2] Bungartz, H.-J.; Schäfer, M., Fluid-structure Interaction: Modelling, Simulation, Optimisation, 53 (2006), Springer Science & Business Media · Zbl 1097.76002
[3] Van Loon, R.; Anderson, P. D.; Van de Vosse, F. N.; Sherwin, S. J., Comparison of various fluid – structure interaction methods for deformable bodies, Comput. Struct., 85, 11-14, 833-843 (2007)
[4] Fernández, M. A.; Gerbeau, J.-F., Algorithms for fluid-structure interaction problems, Cardiovascular Mathematics, 307-346 (2009), Springer
[5] Hou, G.; Wang, J.; Layton, A., Numerical methods for fluid-structure interaction—a review, Commun. Comput. Phys., 12, 2, 337-377 (2012) · Zbl 1373.76001
[6] Du, Q.; Gunzburger, M. D.; Hou, L. S.; Lee, J., Semidiscrete finite element approximations of a linear fluid-structure interaction problem, SIAM J. Numer. Anal., 42, 1, 1-29 (2004) · Zbl 1159.74343
[7] González, M.; Selgas, V., Analysis of a velocity-stress-pressure formulation for a fluid-structure interaction problem, Appl. Numer. Math., 123, 275-299 (2018) · Zbl 1433.74044
[8] Hellinger, E., Die allgemeinen ansätze der mechanik der kontinua., Encyclopadie der Mathematischen Wissenschaften, 30, 4, 602-694 (1914) · JFM 45.1012.01
[9] Reissner, E., On a variational theorem in elasticity, J. Math. Phys., 29, 2, 90-95 (1950) · Zbl 0039.40502
[10] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer · Zbl 0788.73002
[11] Arnold, D. N.; Winther, R., Mixed finite elements for elasticity, Numer. Math., 92, 3, 401-419 (2002) · Zbl 1090.74051
[12] Arnold, D. N.; Winther, R., Nonconforming mixed elements for elasticity, Math. Models Methods Appl. Sci., 13, 3, 295-307 (2003) · Zbl 1057.74036
[13] Arnold, D. N.; Awanou, G., Rectangular mixed finite elements for elasticity, Math. Models Methods Appl. Sci., 15, 9, 1417-1429 (2005) · Zbl 1077.74044
[14] Yi, S.-Y., Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions, Calcolo, 42, 2, 115-133 (2005) · Zbl 1168.74463
[15] Yi, S.-Y., A new nonconforming mixed finite element method for linear elasticity, Math. Models Methods Appl. Sci., 16, 07, 979-999 (2006) · Zbl 1094.74057
[16] Hu, J.; Shi, Z., Lower order rectangular nonconforming mixed finite elements for plane elasticity, SIAM J. Numer. Anal., 46, 1, 88-102 (2008) · Zbl 1166.65395
[17] Chen, S.-C.; Wang, Y.-N., Conforming rectangular mixed finite elements for elasticity, J. Sci. Comput., 47, 1, 93-108 (2011) · Zbl 1248.74038
[18] Gopalakrishnan, J.; Guzmán, J., Symmetric nonconforming mixed finite elements for linear elasticity, SIAM J. Numer. Anal., 49, 4, 1504-1520 (2011) · Zbl 1237.74174
[19] Carstensen, C.; Gedicke, J.; Park, E.-J., Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem, SIAM J. Sci. Comput., 34, 4, A2267-A2287 (2012) · Zbl 1250.76130
[20] Falk, R. S., Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 57, 196, 529-550 (1991) · Zbl 0747.73044
[21] L. Baffico, T. Sassi, Existence result for a fluid structure interaction problem with friction type slip boundary condition, J. Appl. Math and Mech 95(8) 831-844.; L. Baffico, T. Sassi, Existence result for a fluid structure interaction problem with friction type slip boundary condition, J. Appl. Math and Mech 95(8) 831-844. · Zbl 1329.35239
[22] C. LeRoux, A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math Methods Appl. Sci. 30(5) 595-624.; C. LeRoux, A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math Methods Appl. Sci. 30(5) 595-624. · Zbl 1251.76008
[23] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[24] A. Byfut, D. Gedicke, D. Günther, J. Reininhaus, S. Wiedemann, \(F_F\) https://github.com/project-openffw/openffw; A. Byfut, D. Gedicke, D. Günther, J. Reininhaus, S. Wiedemann, \(F_F\) https://github.com/project-openffw/openffw
[25] Carstensen, C.; Günther, D.; Reininghaus, J.; Thiele, J., The Arnold-Winther mixed FEM in linear elasticity. I. Implementation and numerical verification, Comput. Methods Appl. Mech. Eng., 197, 33-40, 3014-3023 (2008) · Zbl 1194.74374
[26] Carstensen, C.; Eigel, M.; Gedicke, J., Computational competition of symmetric mixed FEM in linear elasticity, Comput. Methods Appl. Mech. Eng., 200, 41-44, 2903-2915 (2011) · Zbl 1230.74172
[27] Astorino, M.; Grandmont, C., Convergence analysis of a projection semi-implicit coupling scheme for fluid – structure interaction problems, Numer. Math., 116, 4, 721-767 (2010) · Zbl 1426.74124
[28] Kuberry, P.; Lee, H., A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods Appl. Mech. Eng., 267, 594-605 (2013) · Zbl 1286.74031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.