×

Proposed physical explanation for the electron spin and related antisymmetry. (English) Zbl 1423.81100

Summary: We offer a possible physical explanation for the origin of the electron spin and the related antisymmetry of the wave function for a two-electron system, in the framework of nonrelativistic quantum mechanics as provided by linear stochastic electrodynamics. A consideration of the separate coupling of the electron to circularly polarized modes of the random electromagnetic vacuum field, allows to disclose the spin angular momentum and the associated magnetic moment with a \(g\)-factor 2, and to establish the connection with the usual operator formalism. The spin operator turns out to be the generator of internal rotations, in the corresponding coordinate representation. In a bipartite system, the distinction between exchange of particle coordinates (which include the internal rotation angle) and exchange of states becomes crucial. Following the analysis of the respective symmetry properties, the electrons are shown to couple in antiphase to the same vacuum field modes. This finding, encoded in the antisymmetry of the wave function, provides a physical rationale for the Pauli principle. The extension of our results to a multipartite system is briefly discussed.

MSC:

81R25 Spinor and twistor methods applied to problems in quantum theory
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81V80 Quantum optics
37A50 Dynamical systems and their relations with probability theory and stochastic processes

References:

[1] Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930) · JFM 56.0754.06
[2] Bhabha, H.J., Corben, H.C.: General classical theory of spinning particles in a Maxwell field. Proc. R. Soc. A 178, 273 (1941) · Zbl 0026.38203 · doi:10.1098/rspa.1941.0056
[3] Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479 (1952) · Zbl 0047.21208 · doi:10.1119/1.1933296
[4] Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn, p. 262. Clarendon, Oxford (1958) · Zbl 0080.22005
[5] de la Peña, L., Jáuregui, A.: The spin of the electron according to stochastic electrodynamics. Found. Phys. 12, 441 (1982) · doi:10.1007/BF00729994
[6] Sachidanandam, S.: A derivation of intrinsic spin one-half from random electrodynamics. Phys. Lett. A 97, 323 (1983) · doi:10.1016/0375-9601(83)90651-5
[7] Muralidhar, K.: The spin bivector and zeropoint energy in geometric algebra. Adv. Stud. Theor. Phys. 6, 675 (2012). [see also by the same author: Classical Origin of Quantum Spin, Apeiron, 18 (2011), 146]
[8] Hestenes, D.; Grandy, WT (ed.); Milonni, PW (ed.), The kinematic origin of complex wave functions (1993), Cambridge
[9] Cetto, A.M., de la Peña, L., Valdés-Hernández, A.: Emergence of quantization: the spin of the electron. JPCS 504, 012007 (2014)
[10] Kaplan, I.G.: The Pauli exclusion principle. Can it be proved? Found. Phys. 43, 1233-1251 (2013) · Zbl 1356.81036 · doi:10.1007/s10701-013-9742-4
[11] Kaplan, I.G.: The Pauli Exclusion Principle: Origin, Verifications, and Applications. Wiley, New York (2017) · Zbl 1381.81001
[12] Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40, 776-792 (2010). (see also arXiv:0810.2399v4 [quant-ph] 3 Feb 2014) · Zbl 1197.81196
[13] de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: The Emerging Quantum. The Physics Behind Quantum Mechanics. Springer, Berlin (2015) · Zbl 1300.81001
[14] Valdés-Hernández, A., de la Peña, L., Cetto, A.M.: Bipartite entanglement induced by a common background (zero-point) radiation field. Found. Phys. 41, 843 (2011) · Zbl 1214.81047 · doi:10.1007/s10701-010-9527-y
[15] Cetto, A.M., de la Peña, L.: Electron system correlated by the zero-point field: physical explanation for the spin-statistics connection. JPCS 701, 012008 (2016)
[16] Sobelman, I.I.: Atomic Spectra and Radiative Transitions. Springer, Berlin (1979) · doi:10.1007/978-3-662-05905-0
[17] Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge U. P., Cambridge (1995) · doi:10.1017/CBO9781139644105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.