×

On the irreducibility of Severi varieties on \(K3\) surfaces. (English) Zbl 1423.14192

Let \((X,L)\) be a polarized \(K3\) surface of genus \(p\ge 11\) with \(L\) the generator of \(\mathrm{Pic}(S)\). The Severi variety \(V^{L,\delta}\) is the parameters spaces for the set of all integral nodal curves \(D\in |L|\) with exactly \(\delta\) nodes. Here the authors prove that \(V^{L,\delta}\) is irreducible if \(p\ge 4\delta -3\) improving in the case of the principal polarization a theorem by M. Kemeny [Bull. London Math. Soc. 43, No. 1, 159–174 (2013; Zbl 1032.14005)], which say that for any \(k\ge 1\) \(V^{kL,\delta}\) is irreducible if \(\delta < \frac{6(2p-2)+8}{(11(2p-2)+12)^2}k^2(2p-2)^2\).

MSC:

14H15 Families, moduli of curves (analytic)
14J28 \(K3\) surfaces and Enriques surfaces

Citations:

Zbl 1032.14005

References:

[1] Ballico, E.; Fontanari, C.; Tasin, L., Singular curves on \(K3\) surfaces, Sarajevo J. Math., 6(19), 2, 165-168 (2010) · Zbl 1213.14062
[2] Caporaso, Lucia; Harris, Joe, Parameter spaces for curves on surfaces and enumeration of rational curves, Compositio Math., 113, 2, 155-208 (1998) · Zbl 0930.14036 · doi:10.1023/A:1000401119940
[3] Chen, Xi, Rational curves on \(K3\) surfaces, J. Algebraic Geom., 8, 2, 245-278 (1999) · Zbl 0940.14024
[4] XCh-pre16 X. Chen, Nodal curves on K3 surfaces, preprint, arXiv:1611.07423, 2016.
[5] Chiantini, L.; Ciliberto, C., Weakly defective varieties, Trans. Amer. Math. Soc., 354, 1, 151-178 (2002) · Zbl 1045.14022 · doi:10.1090/S0002-9947-01-02810-0
[6] Ciliberto, Ciro; Dedieu, Thomas, On universal Severi varieties of low genus \(K3\) surfaces, Math. Z., 271, 3-4, 953-960 (2012) · Zbl 1252.14033 · doi:10.1007/s00209-011-0898-3
[7] Ciliberto, Ciro; Knutsen, Andreas Leopold, On \(k\)-gonal loci in Severi varieties on general \(K3\) surfaces and rational curves on hyperk\"{a}hler manifolds, J. Math. Pures Appl. (9), 101, 4, 473-494 (2014) · Zbl 1291.14049 · doi:10.1016/j.matpur.2013.06.010
[8] Dedieu, T.; Sernesi, E., Equigeneric and equisingular families of curves on surfaces, Publ. Mat., 61, 1, 175-212 (2017) · Zbl 1374.14025 · doi:10.5565/PUBLMAT\_61117\_07
[9] Fogarty, John, Algebraic families on an algebraic surface, Amer. J. Math, 90, 511-521 (1968) · Zbl 0176.18401 · doi:10.2307/2373541
[10] G\'{o}mez, Tom\'{a}s L., Brill-Noether theory on singular curves and torsion-free sheaves on surfaces, Comm. Anal. Geom., 9, 4, 725-756 (2001) · Zbl 1028.14010 · doi:10.4310/CAG.2001.v9.n4.a3
[11] Green, Mark; Lazarsfeld, Robert, Special divisors on curves on a \(K3\) surface, Invent. Math., 89, 2, 357-370 (1987) · Zbl 0625.14022 · doi:10.1007/BF01389083
[12] Harris, Joe; Morrison, Ian, Moduli of curves, Graduate Texts in Mathematics 187, xiv+366 pp. (1998), Springer-Verlag, New York · Zbl 0913.14005
[13] Hartshorne, Robin, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ., 26, 3, 375-386 (1986) · Zbl 0613.14008 · doi:10.1215/kjm/1250520873
[14] Keilen, Thomas, Irreducibility of equisingular families of curves, Trans. Amer. Math. Soc., 355, 9, 3485-3512 (2003) · Zbl 1032.14005 · doi:10.1090/S0002-9947-03-03304-X
[15] Kemeny, Michael, The universal Severi variety of rational curves on K3 surfaces, Bull. Lond. Math. Soc., 45, 1, 159-174 (2013) · Zbl 1268.14039 · doi:10.1112/blms/bds075
[16] Knutsen, Andreas Leopold, On \(k\) th-order embeddings of \(K3\) surfaces and Enriques surfaces, Manuscripta Math., 104, 2, 211-237 (2001) · Zbl 1017.14015 · doi:10.1007/s002290170040
[17] KLM A. L. Knutsen, M. Lelli-Chiesa, and G. Mongardi, Severi varieties and Brill-Noether theory of curves on abelian surfaces, J. Reine Angew., DOI 10.1515/crelle-2016-0029. · Zbl 1439.14021
[18] Lazarsfeld, Robert, Brill-Noether-Petri without degenerations, J. Differential Geom., 23, 3, 299-307 (1986) · Zbl 0608.14026
[19] Sernesi, Edoardo, Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 334, xii+339 pp. (2006), Springer-Verlag, Berlin · Zbl 1102.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.