×

Yamabe solitons on \(3\)-dimensional contact metric manifolds with \(Q \varphi = \varphi Q\). (English) Zbl 1422.53034

Summary: If \(M\) is a 3-dimensional contact metric manifold such that \(Q \varphi = \varphi Q\) which admits a Yamabe soliton \((g, V)\) with the flow vector field \(V\) pointwise collinear with the Reeb vector field \(\xi\), then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if \(M\) is endowed with a Yamabe soliton \((g, V)\), then either \(M\) is flat or it has constant scalar curvature and the flow vector field \(V\) is Killing. Furthermore, we show that if \(M\) is non-flat, then either \(M\) is a Sasakian manifold of constant curvature \(1\) or \(V\) is an infinitesimal automorphism of the contact metric structure on \(M\).

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53D15 Almost contact and almost symplectic manifolds
35C08 Soliton solutions
Full Text: DOI

References:

[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds (Birkhäuser, Boston, 2010). · Zbl 1246.53001
[2] Blair, D. E., Koufogiorgos, T. and Sharma, R., A classification of 3-dimensional contact metric manifolds with \(Q \varphi = \varphi Q\), Kodai Math. J.13 (1990) 391-401. · Zbl 0716.53041
[3] Blair, D. E. and Sharma, R., Three dimensional locally symmetric contact metric manifolds, Boll. Unione Mat. Ital.4-A (1990) 385-390. · Zbl 0721.53046
[4] A. M. Blaga, A note on warped product almost quasi-Yamabe solitons, preprint (2018), arXiv:1804.05393v2. · Zbl 1499.53194
[5] Brendle, S., Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom.69(2) (2005) 217-278. · Zbl 1085.53028
[6] Brendle, S., Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math.170(3) (2007) 541-576. · Zbl 1130.53044
[7] Burchard, A., Mccan, R. J. and Smith, A., Explicit Yamabe flow of an asymmetric cigar, Methods Appl. Anal.15(1) (2008) 65-80. · Zbl 1172.53042
[8] Calvaruso, G. and Zaeim, A., A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys.80 (2014) 15-25. · Zbl 1286.53046
[9] Cao, H. D., Sun, X. and Xiaofeng, Y., On the structure of gradient Yamabe solitons, Math. Res. Lett.19 (2012) 767-774. · Zbl 1267.53066
[10] Chang, S. C., Chiu, H. L. and Wu, C. T., The Li-Yau-Hamilton inequality for Yamabe flow on a closed CR 3-manifold, Trans. Amer. Math. Soc.362 (2010) 1681-1698. · Zbl 1192.32020
[11] Chen, B. Y. and Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math.15(5) (2018) (9 pages). · Zbl 1425.53050
[12] Chow, B., The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math.45 (1992) 1003-1014. · Zbl 0785.53027
[13] Chu, Y. and Wang, X., On the scalar curvature estimates for gradient Yamabe solitons, Kodai Math. J.36 (2013) 246-257. · Zbl 1276.53048
[14] Daskalopoulos, P. and Sesum, N., The classification of locally conformally flat Yamabe solitons, Adv. Math.240 (2013) 346-369. · Zbl 1290.35217
[15] Deshmukh, S. and Chen, B. Y., A note on Yamabe solitons, Balkan J. Geom. Appl.23(1) (2018) 37-43. · Zbl 1408.53051
[16] Hamilton, R., The Ricci flow on surfaces, Contemp. Math.71 (1988) 237-262. · Zbl 0663.53031
[17] Huang, G. and Li, H., On a classification of the quasi Yamabe gradient solitons, Methods Appl. Anal.21 (2014) 379-390. · Zbl 1304.53033
[18] Ho, P. T., The long time existence and convergence of the CR Yamabe flow, Commun. Contemp. Math.14 (2012) 50. · Zbl 1246.53087
[19] Hsu, S. Y., A note on compact gradient Yamabe solitons, J. Math. Anal. Appl.388 (2012) 725-726. · Zbl 1242.53044
[20] Hsu, S. Y., Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations49 (2014) 307-321. · Zbl 1285.35046
[21] Neto, B. Leandro, A note on (anti-)self dual quasi Yamabe gradient solitons, Results Math.71 (2017) 527-533. · Zbl 1377.53065
[22] Neto, B. Leandro and Pina, H., Generalized quasi Yamabe gradient solitons, Differential Geom. Appl.149 (2016) 167-175. · Zbl 1352.53040
[23] Ma, L. and Cheng, L., Properties of complete non-compact Yamabe solitons, Ann. Global Anal. Geom.40(3) (2011) 379-387. · Zbl 1225.53038
[24] Ma, L. and Miquel, V., Remarks on scalar curvature of Yamabe solitons, Ann. Global Anal. Geom.42 (2012) 195-205. · Zbl 1253.53036
[25] Sharma, R., A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys.9(4) (2012) 1220003 (5 pages). · Zbl 1257.53074
[26] Suh, S. J. and Mandal, K., Yamabe solitons on three-dimensional \(N(\kappa)\)-paracontact metric manifolds, Bull. Iran. Math. Soc.44(1) (2018) 183-191. · Zbl 1426.53051
[27] Tanno, S., Note on infinitesimal transformations over contact manifolds, Tohoku Math. J.14 (1962) 416-430. · Zbl 0112.13903
[28] Tanno, S., Some transformations on manifolds with almost contact and contact metric structures, Tohoku Math. J.15 (1963) 140-147. · Zbl 0114.38004
[29] Wang, L. F., On noncompact quasi Yamabe gradient solitons, Differential Geom. Appl.31 (2013) 337-348. · Zbl 1279.53039
[30] Wang, Y., Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin23 (2016) 345-355. · Zbl 1350.53040
[31] Yano, K., Integral Formulas in Riemannian Geometry (Marcel Dekker, New York, 1970). · Zbl 0213.23801
[32] Ye, R., Global existence and convergence of Yamabe flow, J. Differential Geom.39 (1994) 35-50. · Zbl 0846.53027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.