×

An adhesive contact problem for a semi-plane with a surface elasticity in the Steigmann-Ogden form. (English) Zbl 1415.74008

Summary: The main goal of the present paper is to study a two-dimensional problem of adhesive contact of a rigid stamp with an elastic upper semi-plane. Surface elasticity in the Steigmann-Ogden form acts on the free boundary of the semi-plane. The mechanical problem is solved using integral representations of the stresses and the displacements. The resulting system of singular integro-differential equations is regularized using Fourier transform method. The numerical procedure of the solution of the system of singular integro-differential equations is presented, and the numerical results are obtained for different values of the mechanical parameters. The size-dependency of the solutions of the problem is studied. It can be seen that taking into account curvature-dependency of the surface energy is increasingly important at the very small scales (characteristic length of the contact interval is under 20 nm.

MSC:

74B05 Classical linear elasticity
45J05 Integro-ordinary differential equations
Full Text: DOI

References:

[1] Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309-323 (2001) · doi:10.1016/S0167-6636(01)00055-2
[2] Chahapadia, P., Mohammadi, P., Sharma, P.: Erratum to: curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 60, 1241-1242 (2012) · doi:10.1016/j.jmps.2012.01.004
[3] Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. 44, 91-149 (2004) · doi:10.1016/j.mser.2004.05.001
[4] Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59, 2103-2115 (2011) · Zbl 1270.74018 · doi:10.1016/j.jmps.2011.06.007
[5] Dai, M., Gharani, A., Schiavone, P.: Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Appl. Math. Model. 55, 160-170 (2018) · Zbl 1480.74051 · doi:10.1016/j.apm.2017.10.028
[6] Duan, H., Wang, J., Huang, Z., Karihaloo, B.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 461, 3335-3353 (2005) · Zbl 1370.74068 · doi:10.1098/rspa.2005.1520
[7] Duan, H., Wang, J., Huang, Z., Luo, Z.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37, 723-736 (2005) · doi:10.1016/j.mechmat.2004.07.004
[8] Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825-1857 (1993) · Zbl 0791.73029 · doi:10.1016/0022-5096(93)90072-N
[9] Gakhov, F.: Boundary Value Problems. Dover, New York (1990) · Zbl 0830.30026
[10] Gao, X.L.: An expanding cavity model incorporating strain-hardening and indentation size effects. Int. J. Solids Struct. 43, 6615-6629 (2006) · Zbl 1120.74655 · doi:10.1016/j.ijsolstr.2006.01.008
[11] Gao, X.L.: A new expanding cavity model for indentation hardness including strain-hardening and indentation size effects. J. Mater. Res. 21, 1317-1326 (2006) · doi:10.1557/jmr.2006.0158
[12] Gao, X., Huang, Z., Fang, D.: Curvature-dependent interfacial energy and its effects on the elastic properties of nanomaterials. Int. J. Solids Struct. 113-114, 100-107 (2017) · doi:10.1016/j.ijsolstr.2017.01.021
[13] Gurtin, M., Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[14] Gurtin, M., Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[15] He, L., Lim, C.: Surface Green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 217-235 (2006) · Zbl 1119.74311
[16] He, L., Lim, C., Wu, B.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847-857 (2004) · Zbl 1075.74576 · doi:10.1016/j.ijsolstr.2003.10.001
[17] Hong, S., Weil, R.: Low cycle fatigue of thin copper foils. Thin Solid Films 283, 175-181 (1996) · doi:10.1016/0040-6090(95)08225-5
[18] Horstemeyer, M., Baskes, M.: Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. Trans. Am. Soc. Mech. Eng. 121, 114-119 (1999)
[19] Huang, D.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568-579 (2008) · Zbl 1167.74497 · doi:10.1016/j.ijsolstr.2007.08.006
[20] Judelewicz, M., Künzi, H., Merk, N., Ilschner, B.: Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng. A 186, 135-142 (1994) · doi:10.1016/0921-5093(94)90312-3
[21] Kim, C., Schiavone, P., Ru, C.Q.: Analysis of a mode III crack in the presence of surface elasticity and a prescribed non-uniform surface traction. Z. Angew. Math. Phys. 61, 555-564 (2010) · Zbl 1273.74456 · doi:10.1007/s00033-009-0021-3
[22] Kim, C., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode III crack: complete solution. J. Appl. Mech. 77, 021011 (2010) (7 pages) · doi:10.1115/1.3177000
[23] Kim, C., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (mode I and mode II) in the presence of surface elasticity. J. Elast. 104, 397-420 (2011) · Zbl 1300.74048 · doi:10.1007/s10659-010-9287-0
[24] Kim, C., Schiavone, P., Ru, C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 467, 3530-3549 (2011) · Zbl 1243.74005 · doi:10.1098/rspa.2011.0311
[25] Kim, C., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on a mode III interface crack. Arch. Mech. 63, 267-286 (2011) · Zbl 1269.74195
[26] Kim, C., Ru, C.Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59-66 (2012) · Zbl 1528.74005 · doi:10.1177/1081286511435227
[27] King, F.: Hilbert Transforms, vol. 1. Encyclopedia of Mathematics and Its Applications, vol. 124. Cambridge University Press, Cambridge (2009) · Zbl 1188.44005 · doi:10.1017/CBO9780511735271
[28] Krasnov, M.: Integral Equations: Introduction Into the Theory, 1st edn. Nauka, Moscow (1975) (in Russian)
[29] Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (2014) · Zbl 1328.45001 · doi:10.1007/978-1-4614-9593-2
[30] Ma, Q., Clarke, D.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853-863 (1995) · doi:10.1557/JMR.1995.0853
[31] Mikhlin, S., Prössdorf, S.: Singular Integral Operators. Springer, Berlin (1986) · Zbl 0636.47039 · doi:10.1007/978-3-642-61631-0
[32] Miller, R., Shenoy, V.: Size dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
[33] Muskhelishvili, N.: Some Basic Problems of the Mathematical Theory of Elasticity; Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending. Noordhoff, Groningen (1963) · Zbl 0124.17404
[34] Nix, W., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411-425 (1998) · Zbl 0977.74557 · doi:10.1016/S0022-5096(97)00086-0
[35] Oliver, W., Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564-1583 (1992) · doi:10.1557/JMR.1992.1564
[36] Orav-Puurand, K., Pedas, A., Vainikko, G.: Nyström type methods for Fredholm integral equations with weak singularities. J. Comput. Appl. Math. 234, 2848-2858 (2010) · Zbl 1193.65226 · doi:10.1016/j.cam.2010.01.033
[37] Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Analysis of rigid frictionless indentation on half-space with surface elasticity. Proc. Eng. 14, 2403-2410 (2011) · Zbl 1423.74676 · doi:10.1016/j.proeng.2011.07.302
[38] Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Rigid frictionless indentation on elastic half space with influence of surface stresses. Int. J. Eng. Sci. 71, 15-35 (2013) · Zbl 1423.74676 · doi:10.1016/j.ijengsci.2013.04.005
[39] Qu, S., Huang, Y., Nix, W., Jiang, H., Zhang, F., Hwang, K.: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments. J. Mater. Res. 19, 3423-3434 (2004) · doi:10.1557/JMR.2004.0441
[40] Read, D.: Tension-tension fatigue of copper films. Int. J. Fatigue 20, 203-209 (1998) · doi:10.1016/S0142-1123(97)00080-7
[41] Savruk, M.: Two-Dimensional Problems of Elasticity for Cracked Solids. Naukova dumka, Kiev (1981) (in Russian) · Zbl 0478.73086
[42] Sendova, T., Walton, J.R.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15, 368-413 (2010) · Zbl 1197.74010 · doi:10.1177/1081286510362457
[43] Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663-671 (2004) · Zbl 1111.74629 · doi:10.1115/1.1781177
[44] Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535-537 (2003) · doi:10.1063/1.1539929
[45] Shenoy, V.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, 4039-4052 (2002) · Zbl 1040.74007 · doi:10.1016/S0020-7683(02)00261-5
[46] Steigmann, D., Ogden, R.: Plain deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 453, 853-877 (1997) · Zbl 0938.74014 · doi:10.1098/rspa.1997.0047
[47] Steigmann, D., Ogden, R.: Elastic surface substrate interactions. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 455, 437-474 (1999) · Zbl 0926.74016 · doi:10.1098/rspa.1999.0320
[48] Stelmashenko, N., Walls, M., Brown, L., Milman, Y.: Microindentation on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855-2865 (1993) · doi:10.1016/0956-7151(93)90100-7
[49] Walton, J.: A note on fracture models incorporating surface elasticity. J. Elast. 109(1), 95-102 (2012) · Zbl 1311.74107 · doi:10.1007/s10659-011-9369-7
[50] Walton, J.: Plane-strain fracture with curvature-dependent surface tension: mixed-mode loading. J. Elast. 114(1), 127-142 (2014) · Zbl 1282.74082 · doi:10.1007/s10659-013-9430-9
[51] Walton, J., Zemlyanova, A.: A rigid stamp indentation into a semi-plane with a curvature-dependent surface tension on the boundary. SIAM J. Appl. Math. 76(2), 618-640 (2016) · Zbl 1332.74010 · doi:10.1137/15M1044096
[52] Wang, C., Feng, X.: Effects of surface stress on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007) (6 pages) · doi:10.1063/1.2405127
[53] Zemlyanova, A.: The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack. Q. J. Mech. Appl. Math. 66(2), 199-219 (2013) · Zbl 1291.74165 · doi:10.1093/qjmam/hbt001
[54] Zemlyanova, A.: Curvilinear mode-i/mode-ii interface fracture with a curvature-dependent surface tension on the boundary. IMA J. Appl. Math. 81(6), 1112-1136 (2016) · Zbl 1408.74011 · doi:10.1093/imamat/hxw048
[55] Zemlyanova, A.: A straight mixed mode fracture with the Steigmann-Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65-86 (2017) · Zbl 1458.74129 · doi:10.1093/qjmam/hbw016
[56] Zemlyanova, A.: Frictionless contact of a rigid stamp with a semi-plane in the presence of surface elasticity in the Steigmann-Ogden form. Math. Mech. Solids 23(8), 1140-1155 (2018) · Zbl 1401.74225 · doi:10.1177/1081286517710691
[57] Zemlyanova, A., Mogilevskaya, S.: Circular inhomogeneity with Steigmann-Ogden interface: local fields and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85-98 (2018) · doi:10.1016/j.ijsolstr.2017.11.012
[58] Zemlyanova, A., Walton, J.: Modeling of a curvilinear planar crack with a curvature-dependent surface tension. SIAM J. Appl. Math. 72, 1474-1492 (2012) · Zbl 1264.74014 · doi:10.1137/110860100
[59] Zhao, X., Rajapakse, R.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433-1444 (2009) · Zbl 1213.74243 · doi:10.1016/j.ijengsci.2008.12.013
[60] Zhou, S., Gao, X.L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145-166 (2013) · Zbl 1318.74004 · doi:10.1007/s00033-012-0205-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.