×

Semi-supervised model-based clustering with positive and negative constraints. (English) Zbl 1414.62255

Summary: Cluster analysis is a popular technique in statistics and computer science with the objective of grouping similar observations in relatively distinct groups generally known as clusters. Semi-supervised clustering assumes that some additional information about group memberships is available. Under the most frequently considered scenario, labels are known for some portion of data and unavailable for the rest of observations. In this paper, we discuss a general type of semi-supervised clustering defined by so called positive and negative constraints. Under positive constraints, some data points are required to belong to the same cluster. On the contrary, negative constraints specify that particular points must represent different data groups. We outline a general framework for semi-supervised clustering with constraints naturally incorporating the additional information into the EM algorithm traditionally used in mixture modeling and model-based clustering. The developed methodology is illustrated on synthetic and classification datasets. A dendrochronology application is considered and thoroughly discussed.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

MixSim; OEIS; mclust
Full Text: DOI

References:

[1] Anderson E (1935) The Irises of the Gaspe Peninsula. Bull Am Iris Soc 59:2-5
[2] Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceedings of the 19th International Conference on Machine Learning, pp 19-26
[3] Basu S, Bilenko M, Mooney RJ (2004) A Probabilistic Framework for Semi-Supervised Clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 59-68
[4] Basu S, Davidson I, Wagstaff K (2008) Constrained clustering: advances in algorithms, theory, and application. Chapman and Hall/CRC · Zbl 1142.68005
[5] Bouveyron C, Brunet C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52-78 · Zbl 1471.62032 · doi:10.1016/j.csda.2012.12.008
[6] Bridge M (2012) Locating the origins of wood resources: a review of dendroprovenancing. J Archaeol Sci 39:2828-2834 · doi:10.1016/j.jas.2012.04.028
[7] Campbell NA, Mahon RJ (1974) A multivariate study of variation in two species of rock crab of genus Leptograsus. Aust J Zool 22:417-425 · doi:10.1071/ZO9740417
[8] Chen W-C, Maitra R (2011) Model-based clustering of regression time series data via APECM-An AECM Algorithm Sung to an even faster beat. Stat Anal Data Min 4:567-578 · Zbl 07260303 · doi:10.1002/sam.10143
[9] Côme E, Oukhellou L, Denœux T, Aknin P (2009) Learning from partially supervised data using mixture models and belief functions. Pattern Recognit 42:334-348 · Zbl 1181.68231 · doi:10.1016/j.patcog.2008.07.014
[10] Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood for incomplete data via the EM algorithm (with discussion). J Royal Stat Soc, Ser B 39:1-38 · Zbl 0364.62022
[11] Digalakis VV, Rtischev D, Neumeyer LG (1995) Speaker adaptation using constrained estimation of Gaussian mixtures. IEEE Trans Speech Audio Process 3:357-366 · doi:10.1109/89.466659
[12] Fisher RA (1936) The use of multiple measurements in taxonomic poblems. Ann Eugen 7:179-188 · doi:10.1111/j.1469-1809.1936.tb02137.x
[13] Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768-780
[14] Fraley C, Raftery AE (1998) How many clusters? Which cluster method? Answers via model-based cluster analysis. Comput J 41:578-588 · Zbl 0920.68038 · doi:10.1093/comjnl/41.8.578
[15] Fraley C, Raftery AE (2002) Model-based clustering and density estimation. J Am Stat Assoc 97:611-631 · Zbl 1073.62545 · doi:10.1198/016214502760047131
[16] Fraley C, Raftery AE (2006) MCLUST Version 3 for R: normal mixture modeling and model-based clustering, Tech. Rep. 504, University of Washington, Department of Statistics, Seattle, WA
[17] Gaffney, SJ; Smyth, P., Trajectory clustering with mixture of regression model, 63-72 (1999), USA · doi:10.1145/312129.312198
[18] Grissino-Mayeri HD, Fritts H (1997) The international tree-ring data bank: an enhanced global database serving the Global Scientific Community. Holocene 7:235-238 · doi:10.1177/095968369700700212
[19] Haneca K, Wazny T, Van Acker J, Beeckman H (2005) Provenancing Baltic timber from art historical objects: success and limitations. J Archaeol Sci 32:261-271 · doi:10.1016/j.jas.2004.09.005
[20] Hennig C (2010) Methods for merging Gaussian mixture components. Adv Data Anal Classif 4:3-34 · Zbl 1306.62141 · doi:10.1007/s11634-010-0058-3
[21] Huang J-T, Hasegawa-Johnson M (2009) On semi-supervised learning of Gaussian mixture models for phonetic classification. In: NAACL HLT workshop on semi-supervised learning
[22] Hughes MK, Swetnam TW, Diaz HF (2009) Dendroclimatology: progress and prospects, vol 11. Princeton, Developments in Paleoenvirnmental ResearchSpringer
[23] Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32(3):241-254 · Zbl 1367.62191 · doi:10.1007/BF02289588
[24] Law MHC, Topchy A, Jain AK (2005) Model-based clustering with probabilistic constraints. In: 2005 SIAM International Conference on Data Mining, pp 641-645
[25] Liu B, Shen X, Pan W (2013) Semi-supervised spectral clustering with application to detect population stratification. Front Genet 4:1-5
[26] Lu Z, Leen TK (2007) Penalized probabilistic clustering. Neural Comput 19:1528-1567 · Zbl 1119.68183 · doi:10.1162/neco.2007.19.6.1528
[27] MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp 1:281-297 · Zbl 0214.46201
[28] Maitra R, Melnykov V (2010) Simulating data to study performance of finite mixture modeling and clustering algorithms. J Comput Graph Stat 19:354-376 · doi:10.1198/jcgs.2009.08054
[29] Martinez-Uso A, Pla F, Sotoca J (2010) A semi-supervised Gaussian mixture model for image segmentation. In: International Conference on Pattern Recognition, pp 2941-2944
[30] McLachlan G, Peel D (2000) Finite Mixture Models. Wiley, New York · Zbl 0963.62061 · doi:10.1002/0471721182
[31] Melnykov V (2012) Efficient estimation in model-based clustering of Gaussian regression time series. Stat Anal Data Min 5:95-99 · Zbl 07260316 · doi:10.1002/sam.11138
[32] Melnykov V (2013) On the distribution of posterior probabilities in finite mixture models with application in clustering. J Multivar Anal 122:175-189 · Zbl 1279.62114 · doi:10.1016/j.jmva.2013.07.014
[33] Melnykov V, Chen W-C, Maitra R (2012) MixSim: R package for simulating datasets with pre-specified clustering complexity. J Stat Softw 51:1-25 · doi:10.18637/jss.v051.i12
[34] Melnykov V, Maitra R (2010) Finite mixture models and model-based clustering. Stat Surv 4:80-116 · Zbl 1190.62121 · doi:10.1214/09-SS053
[35] Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using EM. Mach Learn 39:103-134 · Zbl 0949.68162 · doi:10.1023/A:1007692713085
[36] Pan W, Shen X, Jiang A, Hebbel R (2006) Semisupervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22(19):2388-2395 · doi:10.1093/bioinformatics/btl393
[37] Schwarz G (1978) Estimating the dimensions of a model. Ann Stat 6:461-464 · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[38] Shental N, Bar-Hillel A, Hertz T, Weinshall D (2003) Computing Gaussian mixture models with EM using equivalence constraints. In: Advances in NIPS, vol. 15 · Zbl 1161.68775
[39] Sloane NJA (2014) The online encyclopedia of integer sequences: A001349 Number of connected graphs with n nodes
[40] Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained \[KK\]-means Clustering with Background Knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp 577-584
[41] Wang, L.; Zhu, J.; Zou, H., Hybrid Huberized Support Vector Machines for Microarray Classification, 983-990 (2007), USA
[42] Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236-244 · doi:10.1080/01621459.1963.10500845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.